
On Interaction Effects in Greybox Fuzzing
Konstantinos Kitsios

konstantinos.kitsios@uzh.ch
University of Zurich
Zurich, Switzerland

Marcel Böhme
marcel.boehme@acm.org

Max Planck Institute for Security and
Privacy

Bochum, Germany

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT

A greybox fuzzer is an automated software testing tool that gener-
ates new test inputs by applying randomly chosen mutators (e.g.,
flipping a bit or deleting a block of bytes) to a seed input in random
order and adds all coverage-increasing inputs to the corpus of seeds.
We hypothesize that the order in which mutators are applied to a
seed input has an impact on the effectiveness of greybox fuzzers.
In our experiments, we fit a linear model to a dataset that contains
the effectiveness of all possible mutator pairs and indeed observe
the conjectured interaction effect. This points us to more efficient
fuzzing by choosing the most promising mutator sequence with a
higher likelihood.

We propose MuoFuzz, a greybox fuzzer that learns and chooses
the most promising mutator sequences. MuoFuzz learns the con-
ditional probability that the next mutator will yield an interesting
input, given the previously selected mutator. Then, it samples from
the learned probability using a random walk to generate mutator
sequences. We compare the performance of MuoFuzz to AFL++,
which uses a fixed selection probability, and MOPT, which opti-
mizes the selection probability of each mutator in isolation. Experi-
mental results on the FuzzBench and MAGMA benchmarks show
that MuoFuzz achieves the highest code coverage and finds four
bugs missed by AFL++ and one missed by both AFL++ and MOPT.
Data and material: https://doi.org/10.5281/zenodo.17391100

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

software security, fuzzing, mutation strategy

ACM Reference Format:

Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli. 2025. On Inter-
action Effects in Greybox Fuzzing. In Proceedings of 48th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE 2026). ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Mutation-based greybox fuzzing aims to automatically detect un-
expected software behaviour [5, 6, 20, 27, 28, 48]. Given a target
program and a corpus of seed inputs (or simply seeds) to that pro-
gram, fuzzers select one seed and mutate it to produce a mutated
input (or simply input), which they feed to the target program and
gather code coverage feedback. If the input covers new code, it is
added to the seed corpus for further mutations. By repeating this
process for millions of inputs, fuzzers automatically reach and test
deep program locations.

AFL [47] and its more recent successor, AFL++ [11], are the
most widely used fuzzers. To mutate a seed, AFL++ relies on 32
mutators, ranging from simple random bit flipping to disruptive
deletions of byte blocks from the seed. Many of these mutators are
applied consecutively to the seed (forming a mutator sequence) and
the algorithm that controls how mutator sequences are generated
is called mutation strategy. The mutation strategy of AFL++ is
straightforward: each of the 32 mutators has a fixed probability of
being selected. Researchers [21, 25, 29, 46] have proposed mutation
strategies that adjust the probability of each mutator, such that
mutators that produce more coverage-increasing inputs (also called
interesting inputs) have a higher probability of being selected.

The aforementioned studies model and leverage the probability
that each mutator will yield an interesting input in isolation, and
then sample 𝑙 mutators from this probability to create a mutator
sequence of length 𝑙 . This process assumes that each mutator in the
sequence is independent of the others: the probability of selecting
the next mutator does not take into account the already chosen
mutators.

We hypothesize that there may exist an interaction effect be-
tween mutators, which can be leveraged to further increase the
number of interesting inputs and, in turn, the fuzzer’s performance.
Based on this hypothesis, we propose a threefold contribution:

• Empirical evidence that somemutators, when combined, produce
more interesting inputs than others.
• A mutation strategy, implemented into MuoFuzz [19], that lever-
ages our first finding by sampling the next mutator from a proba-
bility distribution conditioned on the previously selected mutator.
• Empirical evidence on the effectiveness of MuoFuzz by com-
paring against state-of-the-art fuzzers in terms of achieved code
coverage and found bugs.

For our first contribution, we fit a linear model where the two
independent variables are the two mutators in a sequence of length
two and the dependent variable is the number of interesting in-
puts produced by this sequence. We collect our dataset by running
AFL++ in 13 target programs. By running an Analysis of Variance
(ANOVA) [12] on the fitted model, we find that the interaction term

https://doi.org/10.5281/zenodo.17391100
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli

explains a statistically significant proportion of the variance. This
means that the interaction effect between two mutators affects the
number of interesting inputs these mutators produce.

For our second contribution, we leverage this newly found in-
teraction effect: We propose a strategy for generating mutator se-
quences where the probability of selecting the next mutator is
conditioned on the previously selected mutator. We implement this
strategy into MuoFuzz (Mut + Duo + Fuzz), which works in two
phases: During the (1) training phase, MuoFuzz learns the condi-
tional probability that a mutator will yield an interesting input
given the previous mutator in the sequence; during the (2) guided
mutation phase, MuoFuzz samples from the learned probability
using a random walk [33].

For our final contribution, we compare the performance of Muo-
Fuzz with AFL++, which uses a fixed selection probability, and
MOPT [29], which optimizes the selection probability of each muta-
tor in isolation, without considering the interaction effect between
mutators. MuoFuzz achieves the highest code coverage in 10 out
of 13 FuzzBench [31] programs. Moreover, it finds four bugs that
AFL++ missed, as well as one bug that both AFL++ and MOPT
missed in the MAGMA benchmark [16].

2 BACKGROUND

In this section, we present the inner workings of mutation-based
greybox fuzzers to provide the necessary background for the rest
of the paper.

Algorithm 1: Mutation-based greybox fuzzing. The part we
modify is highlighted .

Input :Target program 𝑝 , seed corpus 𝑆 , set of mutatorsM
Output :Corpus with crashing inputs𝐶𝑟𝑎𝑠ℎ
𝐶𝑟𝑎𝑠ℎ ← ∅;
repeat

𝑠 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑒𝑒𝑑 (𝑆) ;
for 𝑖𝑖𝑛𝑝𝑢𝑡 = 1 to 𝑛𝑢𝑚_𝑖𝑛𝑝𝑢𝑡𝑠_𝑓 𝑜𝑟_𝑡ℎ𝑖𝑠_𝑠𝑒𝑒𝑑 do

𝑀 ← ∅;
for 𝑛 = 1 to 𝑙 do

𝑚𝑛 ∼ Pr(M) ; // fixed for AFL++; learned for MOPT;
we propose Pr(M | 𝑚𝑛−1).

𝑀 ← 𝑀 ∪ {𝑚𝑛 };
end

𝑠′ ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝑠,𝑀) ;
𝐶𝑟𝑎𝑠ℎ, 𝑆 ← 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑝, 𝑠′,𝐶𝑟𝑎𝑠ℎ, 𝑆) ;

end

until timeout reached;
return𝐶𝑟𝑎𝑠ℎ;

2.1 Mutation-based Greybox Fuzzing

A mutation-based greybox fuzzer takes as input a target program
and a corpus of seed inputs. These initial seeds are usually human-
written inputs aiming to provide a good starting point for mutation.
The fuzzer automatically generates inputs for the target program by
following the steps of Algorithm 1. First, it selects a seed from the
corpus tomutate (line 3). The probability of selecting a seed depends
on heuristic rules: For example, seeds that have been selected in
the past have a lower probability, while seeds that are smaller in
size have a higher probability. Then, the fuzzer decides the number
of mutated inputs that will be produced from this seed (loop limit
in line 4). This number ranges from 16 to many thousands and

Table 1: AFL++ mutators and their selection probability.

ID Description Type Probability

1 flip a random bit unit 0.043
2 replace a random byte with an interesting value unit 0.035
3 replace two adjacent bytes with interesting values unit 0.023
4 replace two adjacent bytes with interesting values (be*) unit
5 replace four adjacent bytes with interesting values unit
6 replace four adjacent bytes with interesting values (be) unit
7 subtract a value between 1 and 35 from a random byte unit
8 add a value between 1 and 35 to a random byte unit
9 subtract a value between 1 and 35 from two adjacent bytes unit
10 subtract a value between 1 and 35 from two adjacent bytes (be) unit
11 add a value between 1 and 35 to two adjacent bytes unit
12 add a value between 1 and 35 to two adjacent bytes (be) unit
13 subtract a value between 1 and 35 from four adjacent bytes unit
14 subtract a value between 1 and 35 from four adjacent bytes (be) unit
15 add a value between 1 and 35 to four adjacent bytes unit
16 add a value between 1 and 35 to four adjacent bytes (be) unit
17 set a random byte to a random value unit
18 increase a random byte by 1 unit
19 decrease a random byte by 1 unit
20 flip all the bits of a random byte unit
21 swap a block of bytes between two positions in the seed chunk
22 delete a block of bytes chunk
23 overwrite a block of the seed with a dictionary entry chunk
24 insert a dictionary entry into a random position of the seed chunk
25 overwrite a block of the seed with an auto-dictionary entry chunk
26 insert an auto-dictionary entry into a random position chunk
27 select a block from another seed of the corpus, and use it to

overwrite a block of the seed
chunk

28 select a block from another seed of the corpus and insert it into
a random position of the seed

chunk

29 select a block and insert a copy of it at a different position chunk
30 insert a block of constant bytes to a random position in the

seed. The constant block can either be a random value or a part
of the original seed.

chunk

31 select a block and overwrite another block with it chunk 0.039
32 select a block and overwrite it with a fixed byte value, which

can be either a random byte or a byte from the original seed
chunk 0.020

*be = big endian

depends on similar heuristics. Afterward, the fuzzer mutates the
seed to generate an input, following themutation strategy described
in the next section (Section 2.2). Finally, the fuzzer feeds the input
to the program (line 11) and monitors its behaviour: If the input
crashes the program, then it is considered a potential bug and is
returned for human inspection (line 14). If the input achieves new
code coverage, it is considered interesting and is added to the seed
corpus to be further mutated in future iterations [48].

2.2 Mutation Strategy

The mutation strategy of AFL++, on top of which we develop our
fuzzer, consists of three stages. The selected seed is first propagated
through the deterministic stage where a set of deterministic muta-
tions are applied. For example, all the bits of the seed are flipped,
one at a time. The deterministic stage targets “low-hanging fruits”
and is not effective in deep program locations due to its simplicity.

Then, the seed goes through the havoc stage, which is the most
effective of the three stages [46]. The havoc stage comes with 32
predefined mutators shown in Table 1. We categorize the mutators
into unit and chunk mutators, following previous work [46]. Unit
mutators perform lightweight modifications to the seed, such as
flipping a random bit. Chunk mutators, on the other hand, dis-
ruptively modify the seed, for example by deleting a whole block.
AFL++ performs the following steps in the havoc stage. First, it
selects the mutator sequence length 𝑙 (loop limit in line 6), i.e., how
many stacked mutators to apply to the seed. This number ranges
from 2 to 16, with lower values having higher probability. Then,

On Interaction Effects in Greybox Fuzzing ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil

it samples from the set of mutators 𝑙 times using the predefined
probabilities of Table 1, creating a sequence of 𝑙 mutators (lines
7–8). The mutator sequence is then applied to the seed sequentially
to produce the mutated input (line 10). The input is finally fed into
the target program and coverage feedback is collected as described
in Section 2.1.

The third stage of the AFL++ mutation strategy is the splice stage.
It disruptively mutates the seed by selecting a random block and
concatenating it with a random block from a different seed. Both
the splice stage and the deterministic stage have less impact than
the havoc stage [46], thus this work, similar to previous works [25],
focuses on the havoc stage. For the rest of this paper, the term
mutation strategy will refer to the havoc stage of the mutation
strategy.

3 RELATEDWORK

We present mutation strategies proposed by previous studies to
improve the default mutation strategy of AFL++, which is program-
agnostic: it assigns a fixed, predefined probability to each of the 32
mutators, regardless of the target program it tests. This approach
is suboptimal since some mutators could work better in some pro-
grams and worse in others. This led researchers to investigate mu-
tation strategies that adjust the probability of each mutator based
on how many interesting inputs the mutator produces.

MOPT [29] is one of the most successful program-adaptive muta-
tion strategies [37] and is included in the official AFL++ repository.
It continuously adjusts the mutator probabilities using a genetic
algorithm inspired by the Particle Swarm Optimization technique,
which aims to find optimal selection probabilities for the 32 muta-
tors so that they maximize the likelihood of generating an interest-
ing input. SLOPT [21] sets a constraint on the mutation strategy
of AFL++: only a single mutator will be used to create a mutator
sequence. This simplification reduces the problem to the subprob-
lems of (1) what mutator will be used in each sequence and (2) how
many times to stack the mutator. SLOPT views these two problems
as multi-armed bandit (MAB) problems and uses the UCB algo-
rithm [2] to solve them. HAVOCMAB [46] treats the problems of
selecting the optimal length of the mutator sequence 𝑙 , as well as
each mutator in the sequence, as two MAB problems, and uses es-
tablished MAB algorithms to solve them. SeamFuzz [25] proposes a
seed-adaptive mutation strategy, where different mutator selection
probabilities are used for different seeds. Seeds are clustered ac-
cording to their similarity, and one selection probability is learned
for each cluster. CMFuzz [45] encodes the seeds as context and
uses contextual MAB algorithms to solve it, leading to different
mutator probabilities for different seeds. VUzzer [36] has two mu-
tators and selects them with a fixed probability, while focusing on
optimizing the location of the seeds to mutate. MendelFuzz [49]
evaluates and improves the deterministic mutation stage, which
involves applying simple mutators (e.g., byte flipping) in all the
possible seed positions. Finally, HonggFuzz [41], similar to AFL++,
implements a program-agnostic mutation strategy with slightly
different mutators than AFL++.

All of these studies generate mutator sequences by considering
each mutator in the sequence as independent from the others. This
assumption allows the use of MAB algorithms, where, by definition,

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
mutator j

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

m
ut

at
or

 i

of interesting inputs N(i, j)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
mutator j

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

m
ut

at
or

 i

Pr(m2 = j|m1 = i)

5

10

15

20

25

0.02

0.04

0.06

0.08

0.10

Figure 1: The left figure shows the number of interesting

inputs generated by the mutator sequence ⟨𝑖, 𝑗⟩, where 𝑖 is

the mutator in the row and 𝑗 is the mutator in the column.

The conditional probability on the right figure is derived by

dividing each row of the left figure by its sum. As such, each

row 𝑖 of the right matrix is a probability distribution, denot-

ing how probable is that selecting 𝑗 as the second mutator

will yield an interesting input, given that the first mutator is

𝑖. These concern the freetype target program.

each arm is independent from the others [24]. Our work focuses
on selecting the optimal mutator conditioned on the previously
selected one, which makes it orthogonal to previous work.

4 INVESTIGATING THE INTERACTION

EFFECT BETWEEN MUTATORS

We hypothesize that some mutators, when combined, are more
effective than others and we experimentally test our hypothesis.

RQ1. Can we measure an interaction effect between two mu-
tators in a mutator sequence?

To test the existence of the interaction effect, we collect a dataset
that captures the effectiveness (i.e., number of interesting inputs
discovered) of each possible pair of mutators. We note that other
factors, like mutator position, can contribute to the number of
interesting inputs discovered by a mutator pair. However, since
fuzzers perform hundreds of millions of mutations, it is reasonable
to assume that these factors even out across all mutator pairs.

Then, we fit a linear model with an interaction term to the col-
lected dataset and conduct a two-way ANOVA [12] to test the
significance of the model’s interaction term. To collect the dataset,
we run AFL++ in 13 target programs following previous work [6,
18, 25, 29, 46], as it is the most widely used fuzzer. However, our
methodology is applicable to sets of mutators other than AFL++,
and we expect our findings to generalize to other mutation-based
greybox fuzzers like libFuzzer [15] that have a similar set of mu-
tators. The details of the dataset collection process are provided
in Section 4.1, followed by the model fitting in Section 4.2 and the
results in Section 4.3.

ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli

4.1 Dataset Collection

LetM = {1, 2, ..., 𝑀} be the IDs of the available mutators and let
⟨𝑚1,𝑚2, ...,𝑚𝑙 ⟩ ∈ M𝑙 denote a mutator sequence of length 𝑙 . To
answer our first research question, we need a dataset containing
the number of interesting inputs generated by each possible pair of
mutators ⟨𝑖, 𝑗⟩ ∈ M2. To collect this dataset, we first select 13 target
programs that were used in previous work [25, 35]. The programs
are part of the FuzzBench [31] benchmark and are shown in the
first column of Table 3. More details on their selection are provided
in Section 6.2. We study each program individually, since some
mutator sequences may be efficient in some programs but not in
others. Our goal is to generate data points 𝑁 (𝑖, 𝑗), 𝑖, 𝑗 ∈ M for each
program that contain the number of interesting inputs generated by
the mutator sequence ⟨𝑖, 𝑗⟩. To do this, we fuzz the selected target
programs using AFL++ with three modifications:
M1: We limit the length of the mutator sequences to 𝑙 = 2 to study
the interaction effect between 2 mutators. Studying the interac-
tion effect of 𝑙 > 2 mutators is computationally challenging, as
we show in Section 5.4.3, where we study the interaction effect
of triplets by using 𝑙 = 3. We observe that, due to combinato-
rial explosion, most triplets remain unobserved during training
because they do not produce a coverage-increasing input.

M2: We sample the mutators uniformly at random instead of fol-
lowing the default probabilities of AFL++, to gather the same
amount of data for each mutator pair.

M3: Wemaintain a |M|× |M| matrix𝑁 (𝑖, 𝑗) that holds the number
of interesting inputs produced by the sequence ⟨𝑖, 𝑗⟩. Each time
⟨𝑖, 𝑗⟩ generates an interesting input, we increase 𝑁 (𝑖, 𝑗) by 1.
We fuzz each target program with AFL++ for 20 trials, hence

we obtain one matrix for each trial 𝑘 ∈ {1, 2, ..., 20}, which we call
𝑁 (𝑖, 𝑗) (𝑘) . We experiment with different values for the length 𝑇 of
the fuzzing campaigns, namely 𝑇 ∈ {1, 5, 24} hours. We find that
the significance of the interaction effect does not change across the
three values of 𝑇 because AFL++ discovers most of the interesting
inputs within the first hours of fuzzing. Figure 1 (left) shows the
collected data 𝑁 (𝑖, 𝑗) averaged over the trials 𝑘 for the freetype
program, while the plots for the rest of the programs are available
in our replication package [19].

4.2 Model Fitting

We use the dataset 𝑁 (𝑖, 𝑗) (𝑘) to train a linear model that, given two
mutators 𝑖, 𝑗 ∈ M, will predict the expected number of interesting
inputs generated by the sequence ⟨𝑖, 𝑗⟩ in a fuzzing campaign for
the given target program. We selected a linear model for simplicity
and interpretability. Given the high goodness-of-fit in Table 2, we
did not try higher-order models. The linear model has categorical
independent variables (both 𝑖 and 𝑗 are categorical) and a numerical
dependent variable [9], so it is of the form:

𝑁̂ (𝑖, 𝑗) = 𝜇 + 𝛼𝑖 + 𝛽 𝑗 + 𝛾𝑖 𝑗 (1)

where 𝜇 is the constant bias, 𝛼𝑖 is the effect of the first mutator in
the sequence, 𝛽 𝑗 is the effect of the second mutator in the sequence,
and 𝛾𝑖 𝑗 is the interaction effect between the two mutators.

The intuition is that the mutator 𝑖 in the sequence ⟨𝑖, 𝑗⟩ is as-
sociated with a constant effect 𝛼𝑖 (or 𝛽 𝑗 for mutator 𝑗). The effect
𝑎𝑖 means that, whenever 𝑖 is the first mutator in the sequence, we

Table 2: The linear model with the interaction term (𝛾𝑖 𝑗 ≠

0) has higher goodness-of-fit than the model without the

interaction term (𝛾𝑖 𝑗 = 0).

𝑅2 𝑅2
𝑎𝑑 𝑗

Target 𝛾ij = 0 𝛾ij ≠ 0 𝛿 𝛾ij = 0 𝛾ij ≠ 0 𝛿

proj4 0.758 0.855 0.097 0.757 0.847 0.090
json 0.629 0.853 0.224 0.628 0.848 0.220
curl 0.672 0.820 0.148 0.672 0.814 0.142
re2 0.586 0.817 0.231 0.585 0.811 0.226
freetype 0.639 0.684 0.045 0.638 0.658 0.020
bloaty 0.524 0.616 0.092 0.522 0.593 0.071
php 0.576 0.613 0.037 0.575 0.595 0.020
libxml 0.472 0.519 0.047 0.478 0.494 0.016
sqlite 0.350 0.380 0.030 0.349 0.350 0.001

should expect an increase (or decrease) in the number of interesting
inputs (relative to the bias 𝜇) of 𝛼𝑖 inputs. The same holds for 𝛽 𝑗 .
Regarding 𝛾𝑖 𝑗 , it denotes the interaction effect of mutators 𝑖 and 𝑗

and is interpreted as follows: Suppose that we expect the mutator 𝑖
in the first position of the sequence (independent of the second) to
increase the number of interesting inputs by 𝛼𝑖 and the mutator 𝑗
in the second position of the sequence (independent of the first) to
increase the number of interesting inputs by 𝛽 𝑗 . Now, suppose that
when 𝑖 is combined with 𝑗 we observe a significant increase (or de-
crease) by 𝛾𝑖 𝑗 ≠ 0; this would mean that there exists an interaction
effect between 𝑖 and 𝑗 . If, on the contrary, 𝛾𝑖 𝑗 = 0, it would mean
that there is no interaction effect.

To test the significance of the interaction term 𝛾𝑖 𝑗 , we use the
two-way ANOVA [12], which tests the null hypothesis that 𝛾𝑖 𝑗 = 0
for all 𝑖, 𝑗 ∈ M. ANOVA has the following three assumptions [34]:
First, that the dataset observations are independent. Since AFL++
saves interesting inputs to be further mutated in the future, possibly
from a different pair of mutators, the independence assumption
could be violated. To test the independence assumption, we em-
ploy the Residuals vs Fitted plot [23]. In nine target programs, the
residuals follow random patterns, indicating that the independence
assumption is met [34], while in four target programs the resid-
uals exhibit a systematic trend, indicating that the independence
assumption is violated. We do not fit a model in these four pro-
grams. Second, ANOVA assumes that the residuals are normally
distributed, which we check by plotting the residuals and observing
a bell-shaped distribution in all nine programs [34]. Finally, ANOVA
assumes homoscedasticity, which we also check using the residuals-
vs-fitted plot [34]. We find heteroscedasticity in 3/9 programs, so
we use the robust hc3 error [38] to mitigate it.

Complementary to theANOVA results, we calculate the goodness-
of-fit, measured with 𝑅2 and 𝑅2

𝑎𝑑 𝑗
[9], of the linear model with the

interaction term (𝛾𝑖 𝑗 ≠ 0) and a linear model without the interac-
tion term (𝛾𝑖 𝑗 = 0). A higher goodness-of-fit for the variation with
the interaction term (𝛾𝑖 𝑗 ≠ 0) would indicate the interaction term
affects the number of interesting inputs.

Our study focuses on the interactions between mutator types,
but it is possible that interactions also exist with other factors, such
as mutator locations (i.e., which part of the input is mutated). There

On Interaction Effects in Greybox Fuzzing ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil

is no reason to believe that the mutation locations or other factors
are not uniformly distributed across mutator pairs. Combined with
the fact that the number of mutations in our experiments is in
the order of millions, we can reasonably expect that the effect of
extraneous variables such as location evens out across all mutator
pairs. More formally, in our experiment, the independent variables
(i.e., the factors being manipulated) are the mutator types, the de-
pendent variable (i.e., the factor being measured) is the number
of interesting inputs, and extraneous variables are other factors
that could potentially influence the dependent variable but are not
manipulated, and as such, they pose no threat for the validity of
the observed interaction effect.

4.3 Results

To test the null hypothesis that 𝛾𝑖 𝑗 = 0 for all 𝑖, 𝑗 ∈ M, we run a
two-way ANOVA on the fitted model (one model for each target
program). For all target programs we get 𝑝 < 0.0001, hence reject
the null hypothesis. This should not bemisinterpreted as allmutator
pairs having a significant interaction effect, rather that there exist
some mutator pairs with a significant interaction effect. Although
two-way ANOVA also generates p-values for each of the individual
hypotheses 𝛾𝑖 𝑗 = 0 for fixed 𝑖 and 𝑗 , using these p-values to draw
inferences is a bad practice because |M|2 = 1024 hypotheses are
tested simultaneously, hence suffering from multiple hypothesis
testing [3]. In Section 7 we manually investigate which mutators
have strong interaction effects.

Complementary to the ANOVA analysis, we show the goodness-
of-fit in Table 2. We focus on 𝑅2

𝑎𝑑 𝑗
because it penalizes the number

of model parameters, which is higher when 𝛾𝑖 𝑗 ≠ 0, but even with
this penalization we see that the model with the interaction term
achieves higher 𝑅2

𝑎𝑑 𝑗
. This means that the interaction term affects

the number of interesting inputs, which agrees with the ANOVA
null hypothesis test.

Finding 1. We measure an interaction effect between two
mutators on the number of interesting inputs.

5 MUOFUZZ

The establishment of the existence of an interaction effect between
two mutators does not guarantee the practical significance of this
effect. To investigate its value for fuzzing, we propose a method

for generating mutator sequences where the probability of

selecting the next mutator is conditioned on the previously

selected one. We implement this method into MuoFuzz and com-
pare its performance against state-of-the-art fuzzers.

5.1 Definitions and Problem Statement

The goal of a mutation strategy is to mutate a seed 𝑠 by applying a
sequence ofmutators. This sequence is of the form ⟨𝑚1,𝑚2, · · · ,𝑚𝑙 ⟩.
The mutators𝑚𝑛 are selected from a predefined set of mutators
M = {1, 2, ..., |M|}. For example, AFL++ defines |M| = 32mutators
which are shown in Table 1.

We reduce the problem of generating a mutator sequence
⟨𝑚1,𝑚2, · · · ,𝑚𝑙 ⟩ to the problem of learning the conditional proba-
bility Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1 = 𝑖) of selecting 𝑗 as the next mutator in
the sequence given that the previously selected mutator is 𝑖 . If we
learn such a probability, we can iteratively generate a mutator se-
quence of arbitrary length 𝑙 with the following steps: We randomly
select the first mutator𝑚1 ∈ M. Then, for fixed 𝑚1, we obtain𝑚2
by sampling from the distribution

𝑚2 ∼ Pr(𝑗) = Pr(𝑚2 = 𝑗 | 𝑚1)
In general, we obtain𝑚𝑛 by sampling from the distribution

𝑚𝑛 ∼ Pr(𝑗) = Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1)
where𝑚𝑛−1 is fixed from the previous step. This sampling algo-
rithm is also known as a Markov random walk [33] on the Markov
chain, where the states are the mutators and Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1 = 𝑖)
are the transition probabilities from state 𝑖 to state 𝑗 .

5.2 Overview

Our mutation strategy consists of two phases. During the train-
ing phase (Figure 2a), we aim to learn the conditional probability
Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1 = 𝑖) of selecting 𝑗 as the next mutator in the
sequence given that the previously selected mutator is 𝑖 . We model
this probability by computing the number of interesting inputs
produced by all possible mutator pairs ⟨𝑖, 𝑗⟩ in the first𝑇𝑡𝑟𝑎𝑖𝑛 hours
of fuzzing. Then, for fixed 𝑖 , we define Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1 = 𝑖) to be
proportional to the number of interesting inputs produced by ⟨𝑖, 𝑗⟩.

After the first 𝑇𝑡𝑟𝑎𝑖𝑛 hours, our fuzzer enters the guided mu-

tation phase (Figure 2b). Here, it generates mutator sequences
by sampling from the learned distribution Pr(𝑗) = Pr(𝑚𝑛 = 𝑗 |
𝑚𝑛−1 = 𝑖) where the mutator selected in each step is used to select
the mutator of the next step. The training time 𝑇𝑡𝑟𝑎𝑖𝑛 that Muo-
Fuzz spends in the training phase before switching to the guided
mutation phase is a hyperparameter that we finetune in Section 6.

5.3 Training Phase

The goal of the training phase is to learn the conditional probability
Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1 = 𝑖) of selecting 𝑗 as the next mutator in the
sequence given that the previously selected mutator is 𝑖 . We define
this probability to be proportional to the number of interesting inputs
generated by the sequence ⟨𝑖, 𝑗⟩; we denote this number with 𝑁 (𝑖, 𝑗).
This design decision is intuitive: we give a higher probability of
selecting the mutator 𝑗 if 𝑗 has generated more interesting inputs
when applied on top of mutator 𝑖 . To obtain 𝑁 (𝑖, 𝑗), in the first
𝑇𝑡𝑟𝑎𝑖𝑛 hours we run AFL++ with the three modificationsM1,M2,
andM3 we applied in Section 4:
M1: We limit the length of the mutator sequences to 𝑙 = 2.
M2: We sample the mutators uniformly at random.
M3: We update 𝑁 (𝑖, 𝑗).

The modifications M1–M3 are the only changes we apply to
AFL++, while all other parameters remain at their default values.
After 𝑇𝑡𝑟𝑎𝑖𝑛 hours, we execute the last step of the training phase:
we define the probability of selecting 𝑗 as the next mutator in the
sequence given that the previously selected mutator is 𝑖 as

Pr(𝑗) = Pr(𝑚𝑛 = 𝑗 | 𝑚𝑛−1 = 𝑖) = 𝑁 (𝑖, 𝑗)∑ |M |
𝑗=1 𝑁 (𝑖, 𝑗)

(2)

ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli

target
 program

Increase Is
Interesting

Add to seeds

a) Training Phase

=mutate(,)

01001
10011
....

01001
10011
....

01001
10011
....

01001
10011
....

 seeds

01001
10011
....

11001
10100
....

target
 program

Is
Interesting

Add to seeds

b) Guided Mutation Phase

=mutate(,)

01001
10011
....

01001
10011
....

01001
10011
....

01001
10011
....

 seeds

01001
10011
....

11011
10101
....

...

Figure 2: High-level overview of MuoFuzz.

The division with the sum turns each row into a probability dis-
tribution that sums to 1. The distribution for the freetype program
is shown on the right side of Figure 1, while the left side shows
the associated 𝑁 (𝑖, 𝑗). This concludes the training phase and Muo-
Fuzz then automatically enters the guided mutation phase. We note
that our training phase is lightweight and embedded in the fuzzing
loop of AFL++. This is in contrast to machine learning approaches
where AFL++ is run for one hour to gather data, which are then
used to train a neural network [39, 40]. Our training is as simple as
increasing 𝑁 (𝑖, 𝑗) whenever an interesting input is generated.

5.4 Guided Mutation Phase

Algorithm 2: Guided Mutation Phase
Input: subroutines 𝑠𝑒𝑙𝑒𝑐𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ () and 𝑠𝑒𝑙𝑒𝑐𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑚𝑢𝑡𝑎𝑡𝑜𝑟 ()
Output: mutator sequence ⟨𝑚1,𝑚2, ...,𝑚𝑙 ⟩

1 𝑙 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ () ;
2 𝑚1 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑚𝑢𝑡𝑎𝑡𝑜𝑟 () ;
3 𝑀 ← ∅;
4 for 𝑛 = 2 to 𝑙 do
5 𝑚𝑛 ∼ Pr(𝑚𝑛 | 𝑚𝑛−1) ;
6 𝑀 ← 𝑀 ∪ {𝑚𝑛 };
7 end

8 return𝑀 = ⟨𝑚1,𝑚2, ...,𝑚𝑙 ⟩;

The goal of the guided mutation phase is to generate mutator
sequences ⟨𝑚1,𝑚2, ...,𝑚𝑙 ⟩ by leveraging the learned probability
distribution of Equation (2). We propose Algorithm 2 to generate
a sequence ⟨𝑚1,𝑚2, ...,𝑚𝑙 ⟩ and replace the highlighted part of
Algorithm 1: First, we select the sequence length 𝑙 (line 1) and
the first mutator𝑚1 (line 2). The subroutines that perform these
selections are hyperparameters and are discussed in detail below.
Then, at each step 2 < 𝑛 < 𝑙 (line 4), we obtain𝑚𝑛 by sampling from
the learned probability Pr(𝑚𝑛 | 𝑚𝑛−1) (line 5), where now𝑚𝑛−1 is
fixed from the previous step. In the remainder of this section, we
discuss the hyperparameters of the guided mutation phase, and in
Section 6 we experimentally select the best-performing values. By
default, MuoFuzz uses the best-performing hyperparameters as
per Section 6 unless stated otherwise.

5.4.1 Selecting the Sequence Length. Algorithm 2 leaves open the
question of what the optimal length 𝑙 of a mutator sequence is. We
consider two options for this hyperparameter. The first option is to
keep the AFL++ default sequence length that ranges from 2 to 16.
However, due to our optimized generation algorithm, a different,
potentially smaller length may be sufficient. For this reason, we

propose a second option: treating the sequence length as a dynami-
cally determined variable. We follow previous work [21] and model
the sequence length selection as a multi-armed bandit (MAB) prob-
lem [24]. We solve this problem using the 𝜀-greedy algorithm, a
well-known heuristic solution to the MAB problem that has been
applied in previous work [13]. Given a set of possible values for
the sequence length 𝑙 ∈ 𝐿 = {2, 3, ..., 16}, the 𝜀-greedy algorithm
selects the best performing (i.e., the one that has generated the
most interesting inputs) sequence length with probability 𝜀, and
with probability 1 − 𝜀 it selects the sequence length uniformly at
random from 𝐿. The value of 𝜀 follows a step decay, starting from
𝜀 = 1 (exploration only) in the first hour of the guided mutation
phase, then dropping to 𝜀 = 0.5 to boost exploitation. We select
the 𝜀-greedy algorithm over other heuristic MAB algorithms like
Upper Confidence Bound (UCB) [2] or Thompson Sampling [24]
because of its simplicity and interpretability.

5.4.2 Selecting the First Mutator. Another hyperparameter of the
guided mutation phase is how to select the first mutator𝑚1. We
investigate two options for𝑚1:

(a) a uniformly random selection of𝑚1 fromM, as is usually
done in random walks [33].

(b) a weighted selection of𝑚1 that gives a higher probability to
mutators that produced more interesting inputs.

To implement (b), for each mutator 𝑖 we calculate a score

𝑠𝑖 =

|M |∑︁
𝑗=1

𝑁 (𝑖, 𝑗) +
|M |∑︁
𝑗=1

𝑁 (𝑗, 𝑖) − 𝑁 (𝑖, 𝑖)

that holds the total number of interesting inputs produced by mu-
tator 𝑖 during the training phase. The first sum corresponds to the
number of interesting inputs where 𝑖 was the first mutator in the
sequence, the second sum corresponds to the number of interesting
inputs where 𝑖 was the second mutator in the sequence, and we
subtract the last term because 𝑁 (𝑖, 𝑖) was counted twice, one time
in each sum. After computing 𝑠𝑖 for each 𝑖 ∈ M, we normalize
them by dividing by their sum to form a probability distribution
and sample the first mutator𝑚1 from that distribution.

5.4.3 Using More Mutators as Context. The decision to use only
the last mutator instead of the last 𝑝 > 1 mutators is not arbitrary.
Modeling the probability 𝑃𝑟

(
𝑚𝑛 | 𝑚𝑛−1𝑚𝑛−2 ...𝑚𝑛−𝑝

)
of selecting

the mutator𝑚𝑛 given the previous 𝑝 mutators is possible, but it
suffers from the curse of dimensionality [22]: The 2-dimensional
matrix 𝑁 (𝑖, 𝑗) would become 𝑝 + 1-dimensional. Even for 𝑝 = 2,

On Interaction Effects in Greybox Fuzzing ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil

we would end up with 323 = 32768 unique mutator triplets. Due
to this combinatorial explosion, most triplets remain unobserved
during training because they do not produce a coverage-increasing
input. This guided our design to look only at the previous mutator
when selecting the next one. Nevertheless, we run experiments
with 𝑝 = 2 in Section 6.4.1 to validate our reasoning.

5.5 Alternative Designs

In our two-phase design, the probability learned in the first 𝑇𝑡𝑟𝑎𝑖𝑛
hours of fuzzing guides the mutations for the remainder of the
fuzzing campaign, which, as we show below, is effective in most
cases. However, alternative designs that move the training phase
later could be considered, and we discuss two of them here, ex-
plaining why they were not preferred. The first alternative would
be to dynamically update 𝑁 (𝑖, 𝑗) throughout the entire fuzzing
campaign in a Multi-Armed Bandit (MAB) setting [24], as done
in similar fuzzing optimizations [13, 46]. However, we showed in
RQ1 that there exist interactions between mutators, which the MAB
setting cannot handle because it assumes independence of mutators
(arms). Another alternative would be to move or repeat the training
phase later in the fuzzing campaign, because some mutator pairs
could be more effective early on but less so toward the end. How-
ever, this design suffers from the limited amount of training data
(i.e., interesting inputs discovered) since greybox fuzzers discover
new interesting inputs near-logarithmically [4]. We experimentally
validated this in initial experiments by shifting the training phase
one hour later in the fuzzing campaign and observing a significant
performance drop.

6 EMPIRICAL EVALUATION OF MUOFUZZ

We develop our novel mutation strategy into a fuzzer named Muo-
Fuzz by replacing the mutation strategy of AFL++ and compare its
performance to state-of-the-art baselines. Since achieved code cov-
erage is the most widely used measure of fuzzer performance [37],
we compare the code coverage of MuoFuzz against the baselines
to answer our first research question.

RQ2. How does MuoFuzz compare to AFL++ and MOPT in
terms of code coverage?

Coverage alone is not a sufficient measure of performance [17, 20,
37]. It is only useful when accompanied by other measures, mainly
the number of bugs found. Our next research question compares
the number of bugs found by MuoFuzz against the baselines.

RQ3. How does MuoFuzz compare to AFL++ and MOPT in
terms of bugs found?

Finally, we follow recent work on fuzzer evaluation [20, 32, 37]
that strongly recommends performing an ablation study when eval-
uating a new fuzzer for two main reasons. First, to increase the
confidence that the success of MuoFuzz comes from leveraging
the information about the previously selected mutator and is not a
byproduct of some latent design decision. Second, to understand

how different hyperparameters affect the performance. For these
reasons, we design an ablation study to extensively evaluate Muo-
Fuzz under different hyperparameters.

RQ4. How do different hyperparameters affect the perfor-
mance of MuoFuzz?

6.1 Experimental Setup

The empirical comparison of two fuzzers is a challenging problem,
mainly due to the inherent randomness of fuzzing. Klees et al. [20]
propose that the fuzzers run for 24 hours and the experiment is
repeated 20 to 30 times for a single program. Then, statistical tests
like the Mann-Whitney U test [30] should be performed to test the
hypothesis that one fuzzer achieves higher coverage than the other,
and the p-values should be reported along with the effect size.

6.1.1 Implementation. We implement MuoFuzz on top of the latest
version of AFL++ at the time, which was 4.21a. Hence, the baselines
are also versioned on AFL++ 4.21a. We open source our implemen-
tation to be independently assessed by the community [19].

6.1.2 Baselines. A best practice when selecting baselines is to al-
ways compare against the fuzzer on top of which the new fuzzer
is built [20, 37]. In our case, we build on top of AFL++, so this is
our first baseline. Additionally, it is suggested to compare against
state-of-the-art fuzzers that propose different approaches to the
same problem, in our case the mutation strategy. MOPT [29] pro-
poses a mutation strategy that optimizes the selection probability
of each mutator in isolation, in contrast to our approach which
optimizes the probability of mutator pairs, which makes it a well-
suited baseline. Moreover, Schloegel et al. [37] found that MOPT
is consistently selected as a baseline lately, so we select MOPT as
a second baseline. We use the AFL++ version of MOPT, since the
original implementation of MOPT is based on AFL, which would
put MOPT at a disadvantage. We intended to use SeamFuzz [25] as
an additional baseline for the same reason as MOPT, but their repli-
cation package is based on an old version of AFL++ v3.15, which
would also put SeamFuzz at a great disadvantage. After our inquiry
to the authors, they assured us that they are working on porting
SeamFuzz to the latest version in the near future.

6.1.3 Benchmarks. The most widely used fuzzing benchmark is
FuzzBench [31, 37], which contains a diverse set of real-world open-
source C programs representing a variety of application domains.
FuzzBench automates the execution and coverage measurement,
ensuring reproducible and consistent results. For these reasons, we
use FuzzBench in our experiments. However, FuzzBench does not
report the number of bugs found. Hence, we also use MAGMA [16],
a benchmark of real-world bugs that MAGMA developers manually
ported to the latest version of each program.

6.1.4 Infrastructure. All experiments take place in 16 identical
virtual machines (VMs) running Ubuntu 22.04, each having an
AMD EPYC 7702 processor with 32 CPUs, 125 GB RAM, and a
100 GB disk. We restrict experiments of the same target program
to the same set of VMs, for example, we use only VM1 and VM2

ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli

Table 3: Median coverage and st.d. after 24 hours of MuoFuzz

(ours), AFL++, and MOPT on FuzzBench.

Target AFL++ MOPT MuoFuzz pAFL++ Â12 pMOPT Â12

bloaty 5,990 ± 78 5,216 ± 332 6,028 ± 73 0.0185** 0.65 0.0000*** 0.99
curl 10,867 ± 102 10,773 ± 94 10,912 ± 82 0.0126** 0.67 0.0000*** 0.89
freetype 11,006 ± 484 11,682 ± 327 11,491 ± 397 0.0006*** 0.73 0.9987 0.31
json 520 ± 0 520 ± 1 520 ± 0 NaN NaN 0.0926* 0.56
lcms 1,956 ± 204 2,002 ± 218 2,004 ± 348 0.3482 0.52 0.9525 0.40
libpcap 2,802 ± 125 2,780 ± 113 2,840 ± 131 0.0323** 0.61 0.0077** 0.64
libpng 2,004 ± 3 2,005 ± 26 2,006 ± 3 0.0781* 0.59 0.2547 0.53
libxml 19,212 ± 244 19,247 ± 891 19,256 ± 215 0.7313 0.46 0.2214 0.55
openssl 5,818 ± 7 5,828 ± 6 5,827 ± 5 0.0000*** 0.82 0.8350 0.42
php 16,712 ± 79 16,653 ± 23 16,689 ± 90 0.4923 0.50 0.0147** 0.69
proj4 6,872 ± 134 6,981 ± 179 7,068 ± 175 0.0000*** 0.78 0.0559* 0.59
re2 2,876 ± 4 2,874 ± 5 2,879 ± 5 0.0022*** 0.68 0.0002*** 0.75
sqlite 19,907 ± 801 18,954 ± 798 20,091 ± 254 0.0003*** 0.76 0.0000*** 0.97

Highest median = bold, second highest = underlined. ***: 𝑝 < 0.01, **: 𝑝 < 0.05, *: 𝑝 < 0.1.

Table 4: Time needed (hours) for MuoFuzz to reach the cov-

erage achieved by the baselines after 24 hours.

Time to final AFL++ cov. Time to final MOPT cov.

Target By AFL++ By MuoFuzz 𝛿 By MOPT MuoFuzz 𝛿

bloaty 23.8 20.0 3.8 23.5 1.5 22.0

curl 22.5 15.8 6.7 23.8 7.0 16.8

freetype 23.8 12.0 11.8 17.8 23.8 -6.0
lcms 23.5 13.8 9.7 23.0 21.5 1.5

libpcap 23.8 19.2 4.6 23.8 16.5 7.3

libpng 17.2 7.8 9.4 19.2 11.0 8.2

libxml 23.8 22.8 1.0 23.8 23.2 0.6

openssl 15.5 9.0 6.5 18.2 19.5 -1.3
php 22.0 23.8 -1.8 23.8 19.8 4.0

proj4 23.8 14.2 9.6 23.8 18.5 5.3

re2 23.8 13.5 10.3 21.5 9.2 12.3

sqlite 23.8 19.0 4.8 22.0 8.8 13.2

Median 23.8 15.0 6.6 23.3 16.5 6.3

for the experiments on proj4 to further ensure fairness (although
the VMs are identical). Only 24 out of 32 cores (∼80%) are used
simultaneously.

6.2 RQ2 — Code Coverage

FuzzBench contains 28 programs but is continuously maintained
so some programs that existed in older versions may not exist any-
more. Evaluating in all 28 programs is computationally intensive:
as reported by Schloegel et al. [37], fuzzers in top venues of the
last five years are evaluated on 8.9 programs on average. To avoid
bias in the program selection, we use the same programs as two
recent fuzzing papers that also used FuzzBench [25, 35]. Five of the
programs used by Li et al. [25] are available in the latest FuzzBench
version, as well as eight of the programs used by Qian et al. [35].
We use their union, totaling thirteen programs.

We run each fuzzer on each program for 24 hours and 30 trials
while keeping the default initial seeds of FuzzBench. We report
the median coverage and the standard deviation after 24 hours
in Table 3. To compare MuoFuzz with a baseline, we employ the
Mann-Whitney U test with the null hypothesis that MuoFuzz does
not achieve higher coverage than the baseline. Since we have two
baselines, AFL++ and MOPT, we run the test two times, one against
AFL++ and one against MOPT. The resulting p-values, 𝑝𝐴𝐹𝐿++ and
𝑝𝑀𝑂𝑃𝑇 respectively, are also shown in Table 3, along with the
associated Vargha-Delaney effect size [43] (𝐴12), which denotes
the probability that a random trial of MuoFuzz will achieve higher

coverage than a random trial of the baseline fuzzer. We see that
MuoFuzz achieves higher coverage than AFL++ in 9/13 programs
and than MOPT in 8/13 programs with statistical significance.

Table 3 answers the question of how many more branches can
MuoFuzz discover in a 24-hour campaign, but does not tell us
anything about how faster it reaches that coverage compared to
the baselines. This is particularly important as Böhme et al.[4]
found that the cost of discovering new branches in greybox fuzzers
increases exponentially with time. In other words, even a seemingly
small increase in the final coverage after 24 hours may be hard
to achieve. Hence, they suggest a complementary metric when
comparing coverage between two fuzzers: How long does it take
one fuzzer to reach the final coverage the other fuzzer achieves after
24 hours? For example, after 24 hours in the curl program, AFL++
achieves a median coverage of 10 867 while MuoFuzz achieves
10 912, which may seem like a not-so-important increase at first
glance (0.9%). However, MuoFuzz reaches 10 867 coverage after
only 15.8 hours (median over 30 trials), while AFL++ first reaches
that number after 22.5 hours (its median coverage does not increase
in the last 1.5 hours). We provide this metric for all target programs
in Table 4. We find that MuoFuzz reaches the 24-hour-coverage
of AFL++ after 15 hours (median across all programs) and the
24-hour-coverage of MOPT after 16.5 hours.

To better understand when MuoFuzz yields coverage improve-
ments, we analyzed the programs inwhichMuoFuzz did not achieve
a statistically significant improvement in coverage over either of
the baselines. For the lcms, libpng, and openssl programs, the
interaction effect could not be observed already from our empirical
analysis in RQ1: The data for these three programs violated the
independence assumption and thus we did not run the ANOVA
analysis. Moreover, for libpng and openssl, the learned proba-
bility matrix does not show clear underlying patterns, in contrast
to the other programs where such patterns are visible, indicating
the absence of an interaction effect. For freetype, libxml, and
php, the goodness-of-fit (𝑅2

𝑎𝑑 𝑗
) in Table 2 is 0.658, 0.595, and 0.494

respectively, indicating that the linear model of Equation (1) only
partially captures 𝑁 (𝑖, 𝑗) and, as a consequence, the interaction ef-
fect may not be strong. In all programs where 𝑅2

𝑎𝑑 𝑗
> 0.8, MuoFuzz

outperforms both baselines with statistical significance, except for
AFL++ in json. For json, all fuzzers reach the maximum coverage
of 520 after only 15 minutes, except for some runs of MOPT. This
early saturation suggests that the mutation strategy does not affect
the coverage in the json program and that other techniques, such
as symbolic execution, may be required to explore json in more
depth.

Finding 2. MuoFuzz achieves higher coverage than AFL++
and MOPT in 9/13 and 8/13 programs respectively, while for
the remaining programs we observed a weak interaction effect
that did not lead to improved performance. MuoFuzz needs
15 and 16.5 hours on average to reach the 24-hour coverage of
AFL++ and MOPT respectively.

On Interaction Effects in Greybox Fuzzing ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil

6.3 RQ3 — Bugs Found

In the second set of experiments we compare the bug-finding ability
of MuoFuzz to the baseline fuzzers. The latest version of MAGMA
(v.1.2) comes with eight target programs, so we use all of them. A
target program may have more than one driver file in MAGMA, in
which case we fuzz all of them. The list of programs along with
their driver files is available in the MAGMA repository.

We run each fuzzer on each benchmark for 24 hours and 20 trials,
while keeping the default initial seeds ofMAGMA.MuoFuzz detects
four bugs that AFL++ cannot detect (XML002, SSL009, LUA002, and
SQL010) while AFL++ detects only one bug that MuoFuzz cannot
detect (TIF001). In other words, MuoFuzz finds three more bugs
thanAFL++.Whenwe look at TIF001, we see that neitherMuoFuzz
nor MOPT found the bug. Only 1 of the 20 trials of the baseline
AFL++ found it, quite possibly due to the inherent randomness of
fuzzing. In contrast, MuoFuzz found the three bugs that AFL++
did not find in 3/20, 3/20, and 2/20 trials respectively. Regarding
MOPT, it finds the same number of bugs as MuoFuzz, but SSL001
is only found by MOPT and SQL010 is only found by MuoFuzz.
This suggests that although the total number of bugs is the same,
MuoFuzz may trigger a different, unique behaviour compared to
MOPT. The bug SSL001 that MuoFuzzmissed belongs to the openssl
program, where the interaction effect is weak and no clear pattern
is evident, as shown in Section 6.2.

We also compare the number of unique bugs triggered by each
fuzzer averaged across the 20 trials. In the libsndfile program, all
three fuzzers trigger exactly seven bugs in all trials. In the remain-
ing seven programs, MuoFuzz ranks first in four, MOPT ranks first
in two, and AFL++ ranks first in one. However, the differences in
the average number of unique bugs are not statistically significant
according to the Mann-Whitney U test [30]. We see a similar pat-
tern in the time-to-bug (considering the bugs that all three fuzzers
found), where no single fuzzer consistently outperforms the other
two. The time-to-bug as well as the number of average unique
bugs for every fuzzer and program are provided in our replication
package for space reasons [19].

Finding 3. MuoFuzz detects three more bugs than AFL++.
It also detects the same number of bugs as MOPT, but each
fuzzer discovered a distinct bug, with MuoFuzz missing a bug
in a programwhere the interaction effect was weak. The above
suggest that leveraging the interaction effect, when it exists,
can trigger unique program behaviour.

To better understand how the design choices and hyperparam-
eters of MuoFuzz affect its performance across different target
programs, we conduct a detailed ablation study in Section 6.4.

6.4 RQ4 — Ablation Study

The goal of the ablation study is to better understand the effect of
various components and hyperparameters of the proposed fuzzer.
Since fuzzers are complex systems comprised of many components,
some components may contribute most to the performance while
others do not contribute at all. In the rest of this section, we run

experiments to understand how different hyperparameters of Muo-
Fuzz contribute to its performance. We focus on FuzzBench because
it yielded more decisive results in the first set of experiments. We
report the results in Table 5.

6.4.1 Using More Mutators as Context. MuoFuzz takes into ac-
count only the last mutator when predicting the next. We reasoned
about the disadvantages of using 𝑝 > 1 previous mutators in Sec-
tion 5.4.3; we experimentally validate this reasoning by implement-
ing a variation of MuoFuzz that takes into account 𝑝 = 2 previous
mutators to select the next one. We modify the logic as described
in Section 5.4.3 and call this variation MuoFuzz𝑝=2. Table 5 shows
that MuoFuzz𝑝=2 underperforms MuoFuzz in all target programs.
By manually analyzing 𝑁 (𝑖, 𝑗, 𝑘) for each program, we see that
the sparsity [8] ranges from 0.003 to 0.1, which validates that the
learning suffers from the curse of dimensionality [22].

6.4.2 Selecting the Length of the Mutator Sequence. The length 𝑙 of
the mutator sequence ⟨𝑥1, 𝑥2, ..., 𝑥𝑙 ⟩ is another hyperparameter of
MuoFuzz. In Section 5 we described the MAB algorithm MuoFuzz
uses to determine the length 𝑙 , and here we investigate its impact on
MuoFuzz performance. To do so, we run a variation of MuoFuzz
where 𝑙 follows the default AFL++ distribution (see Section 2). We
call this variation MuoFuzzdefault length.

From Table 5, we see that MuoFuzzdefault length performs better
than or equal to MuoFuzz in four out of thirteen programs. For
the other nine programs, MuoFuzz performs better. Hence, we
conclude that the MAB-optimized sequence length contributes to
the performance of MuoFuzz.

6.4.3 Selecting the First Mutator. Our proposed algorithm for gen-
erating mutator sequences specifies how to select the next mutator
𝑥𝑛 given the previous mutator in the sequence 𝑥𝑛−1. This leaves
open the question of how to select the first mutator 𝑥1 of the se-
quence ⟨𝑥1, 𝑥2, ..., 𝑥𝑙 ⟩. We investigate two viable answers:
• a uniformly random selection of𝑚1 (i.e., the default variation),
• a weighted selection of 𝑚1 that gives a higher probability to
mutators that have produced more interesting inputs.

We call the latter MuoFuzzweighted𝑚1 . We see that MuoFuzz per-
forms better than or equal to MuoFuzzweighted𝑚1 in ten out of
thirteen programs. Hence, we conclude that a uniformly random
selection of𝑚1 is preferred over a weighted selection. This may
seem counterintuitive since the weighted selection starts the se-
quence with a more “promising” mutator. Our interpretation is that
the weighted selection makes the first mutator more deterministic,
reducing the overall randomness of the mutator sequence, which
in turn reduces the fuzzer exploration.

6.4.4 Using a Random Matrix. To create a meaningful baseline,
we replace the matrix 𝑁 (𝑖, 𝑗) that holds the number of interesting
inputs generated by combining mutator 𝑖 with mutator 𝑗 with a
random matrix. We call this resulting baseline MuoFuzzrandom and
show its performance in Table 5. We see that MuoFuzzrandom per-
forms worse than MuoFuzz in all target programs, which increases
our confidence that the performance of MuoFuzz is a result of its
design and not of randomness.

6.4.5 Selecting the Training Time. Previous work on machine learn-
ing based fuzzers [39, 40] also follows a two-phase process like ours,

https://github.com/HexHive/magma

ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli

Table 5: Median coverage and standard deviation after 24 hours for MuoFuzz variations.

MuoFuzz Variations

Target original p=2 default length weighted𝑚1 random t=2 t=0.5 cross program

proj4 7,068 ± 175 5,490 ± 399 6,993 ± 147 6,982 ± 172 4,991 ± 346 6,974 ± 153 7,039 ± 181 6,991 ± 145
curl 10,912 ± 82 10,407 ± 85 10,926 ± 89 10,876 ± 94 10,322 ± 99 10,860 ± 94 10,876 ± 54 10,858 ± 103
freetype 11,491 ± 397 10,960 ± 508 11,240 ± 429 11,204 ± 419 10,544 ± 427 11,213 ± 366 11,366 ± 290 11,520 ± 302
bloaty 6,028 ± 73 5,408 ± 276 6,341 ± 79 5,971 ± 93 5,244 ± 158 6,018 ± 106 6,015 ± 102 5,960 ± 104
php 16,689 ± 90 16,054 ± 75 16,676 ± 68 16,651 ± 76 16,054 ± 75 16,658 ± 59 16,593 ± 72 16,536 ± 51
libxml 19,256 ± 215 14,783 ± 481 19,166 ± 268 19,246 ± 225 18,994 ± 1,800 19,213 ± 278 19,236 ± 177 19,054 ± 250
sqlite 20,091 ± 254 17,028 ± 729 19,934 ± 318 20,196 ± 691 16,675 ± 1,324 20,188 ± 851 20,176 ± 397 20,100 ± 968
libpng 2,006 ± 3 1,980 ± 19 2,005 ± 3 2,004 ± 3 1,977 ± 16 2,006 ± 18 2,006 ± 24 2,005 ± 24
libpcap 2,840 ± 131 2,417 ± 122 2,830 ± 106 2,852 ± 132 2,307 ± 114 2,841 ± 144 2,817 ± 135 2,769 ± 105
openssl 5,827 ± 5 5,821 ± 7 5,822 ± 6 5,824 ± 7 5,822 ± 6 5,824 ± 6 5,804 ± 16 5,819 ± 8
lcms 2,004 ± 348 1,964 ± 211 1,958 ± 218 2,010 ± 239 1,585 ± 369 2,004 ± 223 1,988 ± 175 2,002 ± 170
re2 2,879 ± 5 2,836 ± 18 2,877 ± 4 2,878 ± 5 2,860 ± 29 2,880 ± 3 2,877 ± 4 2,878 ± 4
json 520 ± 0 520 ± 0 520 ± 0 520 ± 0 520 ± 0.2 520 ± 0 520 ± 0 520 ± 0

Variations that perform better than the original are shown underlined.

where the first hours of the fuzzing budget are dedicated for train-
ing and the rest of them for inference. For example, Neuzz [40]
runs AFL for one hour to collect data about which bytes of the seed
are more likely to yield an interesting input when mutated. For
this reason, we select 𝑇𝑡𝑟𝑎𝑖𝑛 = 1 hour as a starting option for our
training phase. To understand the impact of𝑇𝑡𝑟𝑎𝑖𝑛 , we also run two
variations with 𝑇𝑡𝑟𝑎𝑖𝑛 = 0.5 hours and 𝑇𝑡𝑟𝑎𝑖𝑛 = 2 hours, named
MuoFuzz𝑡=0.5 and MuoFuzz𝑡=2 respectively. We see that MuoFuzz
(with𝑇𝑡𝑟𝑎𝑖𝑛 = 1) performs at least as good asMuoFuzz𝑡=2 in ten out
of thirteen target programs and at least as good as MuoFuzz𝑡=0.5
in eleven out of thirteen programs.

6.4.6 Cross-Program Generalization of Learned Probability. One
question that arises is whether the learned probabilities in one
target program are transferable to another program. In other words,
whether there is a universal probability of mutation pairs that works
well in all programs. To answer this, we first qualitatively analyze
the learned probability of the thirteen programs. We find that in
nine programs the learned probability follows a similar pattern as
the one shown in Figure 1. For the other four programs (libpng,
libpcap, openssl, and lcms), we see four distinct patterns. We
randomly select one of the nine programs (freetype) and use the
probability learned on that program to guide the mutations in the
other programs. The training phase is disabled since no learning is
required and the guided mutation phase takes up the whole fuzzing
campaign (24 hours); We call this variation MuoFuzzcross program.

From Table 5, we see that in the four programs that exhibit a
different pattern than freetype, the performance of MuoFuzzcp is
lower than or equal to MuoFuzzrandom. In the other nine programs,
MuoFuzzcp performs worse than MuoFuzzrandom only in two pro-
grams, while it performs even better than MuoFuzz in two other
programs. These results indicate that, although cross-program gen-
eralization is possible between some (not all) programs, training in
each program individually generally leads to better results.

We notice that in freetype, MuoFuzzcp performs better than
MuoFuzz. This makes sense: the training phase, where only two
mutators are stacked together, is disabled and the fuzzer remains
in the guided mutation phase for 24 hours instead of 23. This sug-
gests that the training phase slows down MuoFuzz, making the
effectiveness of the guided mutation phase even higher. To validate,
we check the performance of MuoFuzz after one hour (the end
of the training phase) for the ten programs in which MuoFuzz

outperformed the baselines in Section 6.2. We find that only in
four of them MuoFuzz was better after one hour; in the other six
programs, MuoFuzz started from a disadvantage and surpassed the
baselines in the next 23 hours of the guided mutation phase.

The ablation study increases our confidence that MuoFuzz per-
formance is a result of the effective harness of the interaction effect
between mutators and quantifies the effect of hyperparameters.

7 DISCUSSION

In this section, we interpret the outcomes of the training phase of
MuoFuzz (Section 7.1) and discuss the implications of our findings
to future research (Section 7.2).

7.1 What does MuoFuzz learn during training?

The performance of MuoFuzz motivates a qualitative analysis of
the learned probability Pr(𝑚𝑛 | 𝑚𝑛−1) to see which mutators (or
mutator families) are better combined with which. For example,
the learned probability for the freetype target program is shown
in Figure 1 (right). Unit mutators that apply simple, lightweight
transformations have a black label font, while chunk mutators, that
disruptively transform the seed have a blue label font. We observe
the following pattern: if the first mutator (row) is a unit mutator, the
second mutator (column) is more likely to be a chunk mutator. On
the other hand, if the first mutator is a chunk mutator, the second
mutator follows a roughly uniform distribution. A similar pattern
is followed in eight other target programs. For the target program
openssl, however, we observe a different pattern: unit mutators
dominate over chunkmutators. This means that a mutator sequence
sampled from this learned probability will have mostly unit mu-
tators. This could be because the input has a strict format that
easily breaks with chunk mutators. A similar, but weaker pattern is
observed for the libpng target program. Finally, for the libpcap
target program the pattern has nothing to do with unit or chunk
mutators. Specifically, mutators that apply simple arithmetics (IDs
7-18) tend to work better when stacked on top of each other, and
also when followed by clone mutators (IDs 29 and 30).

We note that the space of all possible mutator sequences is the
same (or a subset, if 𝑁 (𝑖, 𝑗) contains zeros) for MuoFuzz and the
baselines. This means that MuoFuzz does not generate a new se-
quence that cannot be generated by the baselines, rather it generates
the more interesting sequences earlier in the fuzzing campaign.

On Interaction Effects in Greybox Fuzzing ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil

7.2 Implications for Future Research

We mention here the similarity of generating mutator sequences
with our proposed method to generating text (token sequences,
where tokens can be characters, words, or any other token type)
using bigram language models (LMs) [7]. The goal of a LM is to
learn the conditional probability 𝑃 (𝑥𝑛 | 𝑥1𝑥2 ...𝑥𝑛−1) of the token
𝑥𝑛 given the previously generated tokens 𝑥1𝑥2 ...𝑥𝑛−1. Bigram lan-
guage models, an early predecessor of modern powerful LMs [1, 42],
approximate this probability by looking only at the last token 𝑥𝑛−1.
The training process consists of computing the frequency of all bi-
grams ⟨𝑖, 𝑗⟩ appearing in the training set. The inference of the next
character consists of feeding the previously generated character to
the probability distribution defined by normalizing the calculated
bigram frequencies. Although the problem domain is different, our
two-phase mutation strategy is inspired—up to a certain degree—by
the bigram language models. This similarity yields the question of
whether we can apply more advanced text generation techniques
to the problem of generating mutator sequences. For example, to
train a Recurrent Neural Network (RNN) [10] or a Transformer [44]
on a dataset of successful mutator sequences. Information about
the seed on which the successful mutator was applied could also be
encoded as additional context. These ideas are applicable in light
of our results, which show that information about the previous
mutator can help select the next mutator.

Another line of future work stems from our finding that selecting
the first mutator at random tends to outperform a weighted selec-
tion, which we interpret as increased randomness in the generated
sequences. The overall randomness of our mutation strategy can be
increased by using a different normalization than simply dividing
by the sum in Equation (2). For example, the softmax [14] normaliza-
tion comes with the temperature hyperparameter 𝑇 , where higher
𝑇 yields less randomness, and lower 𝑇 yields higher randomness.
Controlling this hyperparameter would be a way to account for the
exploration/exploitation trade-off in the mutation strategy.

Finally, the idea of considering the previous state in a mutator
sequence can be generalized beyond mutators: it would be inter-
esting to predict the next position to mutate, given the position
mutated by the previous mutator in the sequence. This work would
complement related work that deals with the problem of targeting
mutators to specific positions of the seed [26, 36, 40].

8 THREATS TO VALIDITY

We present here the threats to the validity of our study.
External Validity. The target programs we use in our experi-
ments are open-source C libraries, hence we do not make claims
beyond that. Overfitting a specific set of target programs is a threat
to validity in fuzzer evaluation [37]. To mitigate this threat, we
systematically reason about the selection of our target programs.
MAGMA comes with nine target programs, which is computation-
ally affordable, so we use all of them. FuzzBench, on the other hand,
comes with 28 target programs, which is beyond our computational
budget. For this reason, we randomly select 13 target programs, by
considering the union of the target programs used in two recent re-
lated works. Not comparing tomeaningful state-of-the-art fuzzers is
another threat, which we mitigate by comparing a) against AFL++,

which is the fuzzer we build on top of, and b) against MOPT, which
optimizes the selection probability of each mutator in isolation.
Internal Validity. The correctness of the implementation of any
new tool is a threat to validity, which we mitigate by open-sourcing
our code to be assessed by the community [19]. We run statistical
tests to increase the confidence that the observed performance
difference is not a result of the inherent randomness of fuzzing but
of the more effective mutator sequences. Also, we run an ablation
study to increase the confidence that the performance of MuoFuzz
comes from leveraging the interaction effect between mutators.
Finally, measuring fuzzer performance based on proxy measures
such as code coverage alone poses a threat to fuzzer evaluation [37].
We mitigate this threat by running experiments on bugs from real-
world programs using the MAGMA benchmark.

9 CONCLUSION

This work investigates and proposes a method to leverage the
interaction effect between mutators in greybox fuzzers.

We investigate the interaction effect by fitting a linear model
to a dataset that contains the effectiveness for all possible mutator
pairs of AFL-based fuzzers. We find that the interaction term of
the model explains a statistically significant portion of the model’s
variance, thus it can affect the effectiveness of mutator sequences.

We investigate whether this finding can be leveraged in practice
by developing MuoFuzz, a fuzzer that generates mutator sequences
by using information about the previously selected mutator to
select the next one. Our empirical evaluation shows that MuoFuzz
outperforms AFL++ and MOPT in terms of achieved code coverage,
and also detects a bug that none of these fuzzers was able to detect.
Given that AFL++ uses a fixed selection probability and MOPT
optimizes the selection probability of each mutator in isolation, our
results show that mutator strategies that account for the interaction
effect can be more effective.

ACKNOWLEDGMENTS

K. Kitsios and A. Bacchelli gratefully acknowledge the support of
the Swiss National Science Foundation through the SNSF Project
200021_197227. The authors would also like to thank the Swiss
Group for Original and Outside-the-box Software Engineering
(CHOOSE) for sponsoring the trip to the conference.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[3] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the
Royal Statistical Society: Series B (Methodological) 57, 1 (1995), 289–300. https:
//doi.org/10.1111/j.2517-6161.1995.tb02031.x

[4] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the exponential cost of
vulnerability discovery. In Proceedings of the 28th ACM joint meeting on European
software engineering conference and symposium on the foundations of software
engineering. 713–724.

[5] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security. 2329–2344.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1032–1043.

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

ICSE 2026, April 12–18, 2026, Rio de Janeiro, Brazil Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli

[7] Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jennifer C. Lai, and
Robert L. Mercer. 1992. Class-Based n-gramModels of Natural Language. Compu-
tational Linguistics 18, 4 (1992), 467–479. https://www.aclweb.org/anthology/J92-
4003/

[8] Timothy A Davis. 2006. Direct methods for sparse linear systems. SIAM.
[9] Norman R. Draper and Harry Smith. 1998. Applied Regression Analysis. Wiley

Series in Probability and Statistics 3 (1998).
[10] Jeffrey L. Elman. 1990. Finding Structure in Time. Cognitive Science 14, 2 (1990),

179–211. https://doi.org/10.1207/s15516709cog1402_1
[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, andMarc Heuse. 2020. {AFL++}:

Combining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20).

[12] R. A. Fisher. 1925. Statistical Methods for Research Workers. Edinburgh Oliver
and Boyd 12 (1925), 356–369.

[13] Vasudev Gohil, Rahul Kande, Chen Chen, Ahmad-Reza Sadeghi, and Jeyavijayan
Rajendran. 2024. Mabfuzz: Multi-armed bandit algorithms for fuzzing processors.
In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1–6.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org

[15] Google. n.d.. libFuzzer – A Library for Coverage-Guided Fuzz Testing. https:
//llvm.org/docs/LibFuzzer.html. Accessed: 2024-08-25.

[16] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-
truth fuzzing benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (2020), 1–29.

[17] Laura Inozemtseva and Reid Holmes. 2014. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th international conference on
software engineering. 435–445.

[18] Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf, and Ahmad-
Reza Sadeghi. 2022. DARWIN: Survival of the fittest fuzzing mutators. arXiv
preprint arXiv:2210.11783 (2022).

[19] Konstantinos Kitsios, Marcel Böhme, and Alberto Bacchelli. 2025. Replication
Package for "On Interaction Effects in Greybox Fuzzing". https://doi.org/10.5281/
zenodo.17391101

[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 2123–2138.

[21] Yuki Koike, Hiroyuki Katsura, Hiromu Yakura, and Yuma Kurogome. 2022. Slopt:
Bandit optimization framework for mutation-based fuzzing. In Proceedings of the
38th Annual Computer Security Applications Conference. 519–533.

[22] Mario Köppen. 2000. The curse of dimensionality. In 5th online world conference
on soft computing in industrial applications (WSC5), Vol. 1. 4–8.

[23] Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li. 2005.
Applied Linear Statistical Models (5th ed.). McGraw-Hill/Irwin, Boston, MA.

[24] Tor Lattimore and Csaba Szepesvári. 2020. Bandit Algorithms. Cambridge Univer-
sity Press, Cambridge, UK. https://tor-lattimore.com/downloads/book/book.pdf

[25] Myungho Lee, Sooyoung Cha, and Hakjoo Oh. 2023. Learning seed-adaptive
mutation strategies for greybox fuzzing. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 384–396.

[26] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering. 475–485.

[27] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie,
Haijun Wang, and Yang Liu. 2019. Cerebro: context-aware adaptive fuzzing
for effective vulnerability detection. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 533–544.

[28] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu, and Yu Jiang.
2024. Dodrio: Parallelizing Taint Analysis Based Fuzzing via Redundancy-Free
Scheduling. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering. 244–254.

[29] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1949–1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

[30] Henry B. Mann and Donald R. Whitney. 1947. On a Test of Whether one of
Two Random Variables is Stochastically Larger than the Other. The Annals
of Mathematical Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/
1177730491

[31] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. 2021. Fuzzbench: an open fuzzer benchmarking platform and service. In
Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 1393–1403.

[32] Maria-Irina Nicolae, Max Eisele, and Andreas Zeller. 2023. Revisiting neural
program smoothing for fuzzing. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 133–145.

[33] J. R. Norris. 1998. Markov Chains. Cambridge University Press, Cambridge, UK.
[34] Pennsylvania State University. 2025. ANOVA Assumptions. https://online.stat.

psu.edu/stat500/lesson/10/10.2/10.2.1 Accessed: 2025-03-05.
[35] Ruixiang Qian, Quanjun Zhang, Chunrong Fang, Ding Yang, Shun Li, Binyu Li,

and Zhenyu Chen. 2024. DiPri: Distance-based Seed Prioritization for Greybox
Fuzzing. ACM Transactions on Software Engineering and Methodology (2024).

[36] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware evolutionary fuzzing.. In NDSS,
Vol. 17. 1–14.

[37] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski,
Addison Crump, Arash Ale Ebrahim, Nicolai Bissantz, Marius Muench, and
Thorsten Holz. 2024. SoK: Prudent Evaluation Practices for Fuzzing. arXiv
preprint arXiv:2405.10220 (2024).

[38] Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statis-
tical modeling with python. In 9th Python in Science Conference. https://www.
statsmodels.org/stable/generated/statsmodels.stats.anova.anova_lm.html

[39] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. 2020.
MTFuzz: fuzzing with a multi-task neural network. In Proceedings of the 28th
ACM joint meeting on European software engineering conference and symposium
on the foundations of software engineering. 737–749.

[40] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. 2019. Neuzz: Efficient fuzzing with neural program smoothing. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 803–817.

[41] Robert Swiecki. 2015. Honggfuzz: A general-purpose, easy-to-use fuzzer with
simple, command-line interface. https://github.com/google/honggfuzz. Accessed:
2024-08-25.

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv preprint arXiv:2302.13971 (2023).

[43] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Proceedings of the 31st International Conference on Neural In-
formation Processing Systems (NeurIPS). Curran Associates, Inc., 6000–6010.
https://arxiv.org/abs/1706.03762

[45] Xiaohong Wang, Chengcheng Hu, Ruopeng Ma, et al. 2021. CMFuzz: context-
aware adaptive mutation for fuzzers. Empirical Software Engineering 26, 10 (2021),
1–28. https://doi.org/10.1007/s10664-020-09927-3

[46] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming
Zhang, and Yuqun Zhang. 2022. One fuzzing strategy to rule them all. In Pro-
ceedings of the 44th International Conference on Software Engineering. 1634–1645.

[47] Michal Zalewski. 2014. American Fuzzy Lop (AFL). https://github.com/google/
AFL. Accessed: 2024-08-25.

[48] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Christian Holler, Caroline
Lemieux, and Zhendong Su. 2024. Greybox Fuzzing. In The Fuzzing Book, An-
dreas Zeller, Rahul Gopinath, Marcel Böhme, Christian Holler, Caroline Lemieux,
and Zhendong Su (Eds.). Fuzzingbook.org. https://www.fuzzingbook.org/html/
GreyboxFuzzer.html

[49] Han Zheng, Flavio Toffalini, Marcel Böhme, andMathias Payer. 2025. MendelFuzz:
The Return of the Deterministic Stage. Proceedings of the ACM on Software
Engineering 2, FSE (2025), 44–64.

https://www.aclweb.org/anthology/J92-4003/
https://www.aclweb.org/anthology/J92-4003/
https://doi.org/10.1207/s15516709cog1402_1
http://www.deeplearningbook.org
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.5281/zenodo.17391101
https://doi.org/10.5281/zenodo.17391101
https://tor-lattimore.com/downloads/book/book.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://online.stat.psu.edu/stat500/lesson/10/10.2/10.2.1
https://online.stat.psu.edu/stat500/lesson/10/10.2/10.2.1
https://www.statsmodels.org/stable/generated/statsmodels.stats.anova.anova_lm.html
https://www.statsmodels.org/stable/generated/statsmodels.stats.anova.anova_lm.html
https://github.com/google/honggfuzz
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/s10664-020-09927-3
https://github.com/google/AFL
https://github.com/google/AFL
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html

	Abstract
	1 Introduction
	2 Background
	2.1 Mutation-based Greybox Fuzzing
	2.2 Mutation Strategy

	3 Related Work
	4 Investigating The Interaction Effect Between Mutators
	4.1 Dataset Collection
	4.2 Model Fitting
	4.3 Results

	5 MuoFuzz
	5.1 Definitions and Problem Statement
	5.2 Overview
	5.3 Training Phase
	5.4 Guided Mutation Phase
	5.5 Alternative Designs

	6 Empirical Evaluation Of MuoFuzz
	6.1 Experimental Setup
	6.2 RQ2 — Code Coverage
	6.3 RQ3 — Bugs Found
	6.4 RQ4 — Ablation Study

	7 Discussion
	7.1 What does MuoFuzz learn during training?
	7.2 Implications for Future Research

	8 Threats to Validity
	9 Conclusion
	Acknowledgments
	References

