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Abstract
However much we test a software system, some residual risk of

undiscovered bugs always remains. If we model test generation as a

sampling process, the residual risk can be defined as the probability

that the next test input reveals a bug. This risk is upper-bounded

by the discovery probability (DP), i.e., the probability that the next

test input covers new code, which itself is upper-bounded by the

coverage rate, i.e., the expected number of new coverage elements

per test input. Prior work introduced the Good-Turing estimator
(GoTu) to estimate residual risk via coverage rate. However, we find

that GoTu substantially overestimates, leading to undue optimism in

bug finding because (i) the coverage rate is only a loose upper bound,

and (ii) GoTu ignores dependencies among coverage elements.

We propose dependency-aware DP estimation for residual risk

analysis. Our estimator directly estimates DP and accounts for

dependencies among coverage elements using Ma and Chao’s sam-

ple coverage estimation. A naive implementation requires space

proportional to the number of coverage elements and executions,

which can be prohibitively large. To make it practical, we intro-

duce two optimizations: dependency-aware node removal, which

reduces the number of coverage elements to observe, and online

singleton cluster maintenance, which eliminates the need to record

observed coverage elements in each execution.

A comparison of our estimator and GoTu on real-world software

from FuzzBench demonstrates a substantial reduction in estimation

error. If we stopped the campaign when the estimate of residual

risk falls below a certain threshold, GoTu would lead a tester to

waste 7×more time than our estimator before deciding to stop. Our

estimator achieves a median absolute error of only one-fifth that

of GoTu. Finally, our bug-based analysis shows that our estimator

achieves one to two orders of magnitude lower error than GoTu in

residual risk estimation.
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1 Introduction
Software testing can never be exhaustive. Hence, there is always
some residual risk that an unseen bug will exist even after extensive

testing. Specifically, in a testing campaign where no bugs have

been found, residual risk refers to the probability that the next test

input triggers a bug. In essence, residual risk represents the risk

that persists due to the inherent incompleteness of testing [2]. If

residual risk is high, testing should continue to uncover hidden

bugs. If residual risk is low, continued testing may be inefficient,
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and resources could be redirected to other tasks, such as initiating

a new fuzzing campaign with different seeds or configurations or

employing alternative testing techniques. However, it is impossible

to know the exact residual risk as the underlying distribution of

the testing process is unknown [7].

Recently, several studies have employed estimators from ecolog-

ical biostatistics to estimate an upper bound of the residual risk [2–

4]. Böhme [2] introduced the statistical framework STADS, which

models software testing as a sampling process from an unknown

Bernoulli Product distribution. In this framework, classes represent
coverage elements, such as basic blocks or paths, and each sample
corresponds to a set of these coverage elements exercised during

execution with a generated test input. Böhme demonstrated that

the residual risk is bounded from above by the discovery probability
(DP), which is the probability of encountering an unseen class in the
next sample. If samples are independent and identically distributed

(iid, e.g., in blackbox fuzzing), previous works have employed the

Good-Turing estimator (GoTu) [12] to (over-)approximate the DP.

GoTu estimates the coverage rate, i.e., the expected number of un-

seen classes in the next sample, which serves as an upper bound

on the DP. Developers can safely decide to end test if the estimated

residual risk is below a specified threshold.

Residual risk ≤ Discovery Probability︸                                                ︷︷                                                ︸
Probabilitity of new event

≤ Coverage rate︸           ︷︷           ︸
Expected # of new event

However, the existing residual risk analysis relying on GoTu has

two inherent challenges. First, because GoTu measures the coverage
rate, it introduces two layers of overestimation–from coverage rate

to DP and from DP to residual risk–which can result in significant

overestimation. Second, GoTu assumes independence between the

classes, which does not reflect the inter-dependencies within the

software: certain coverage elements or bugs are only reachable if

other specific blocks are reached first. These limitations may lead to

overly optimistic estimates about discovering new bugs, potentially

resulting in substantial resource waste.

In this work, we propose dependency-aware DP estimation for

residual risk analysis. Our estimator directly estimates DP and

accounts for dependencies between coverage elements. Rather than

relying on explicit dependency analysis, our method leverages only

the statistical properties of sampled executions. The key insight is

that dependencies among coverage elements are naturally reflected

in their co-occurrence within samples. Our estimator builds on Ma

and Chao’s sample coverage estimation [22], which models class

dependencies through their observed co-occurrence, allowing us

to capture structural relationships without program analysis. Our

estimator is a consistent estimator
1
of the DP.

1
In statistics, a consistent estimator is an estimator where, as the number of data points

used increases indefinitely, the resulting sequence of estimates converges in probability

to the estimand. Check Section 3.1 for the formal definition.
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A naive implementation of dependency-aware DP estimation

requires𝑂 (𝑛 ·𝑏) space, where 𝑛 is the number of executions and 𝑏 is

the number of coverage elements, both of which can be prohibitively

large. To make it practical, we introduce two optimizations. The

dependency-aware node removal mechanism reduces the number of

coverage elements 𝑏 to be observed in advance using the control-

flow graph of the software while preserving the accuracy of the

estimator. Online singleton cluster maintenance eliminates the need

to record the covered elements for each execution, reducing the

space complexity of the DP estimation from 𝑂 (𝑛 · 𝑏) to 𝑂 (𝑏).
We evaluate our dependency-aware estimator on real-world soft-

ware testing using fuzzing on eight benchmark programs from

FuzzBench [23]. Our evaluation focuses on two key aspects: the

accuracy of DP estimation and the accuracy of stop-time decisions

based on a DP threshold. Results show that our estimator signif-

icantly outperforms GoTu in DP estimation, achieving a median

absolute error of only one-fifth that of GoTu, supported by statistical

significance tests. It also provides accurate stop-time estimates, re-

ducing bias by approximately 7× compared to GoTu, meaning only

one-seventh of the testing time is wasted relative to the state of the

art. Additionally, our node removal mechanism reduces the number

of observed coverage elements by 43%. In the estimation of resid-

ual risk (i.e., the probability of finding a bug), our estimator yields

1-2 orders of magnitude lower error than GoTu. When applied to

greybox fuzzing—where the bug-finding probability changes over

time—our estimator achieves up to an order of magnitude lower

error in DP estimation compared to GoTu.

The contributions of this paper are summarized as follows:

• We identify key challenges in existing residual risk analysis that

rely on GoTu and propose dependency-aware DP estimation to

tackle these challenges.

• We establish and evaluate the performance of our estimator.

Specifically, we empirically demonstrate that our estimator is 5×
more accurate in DP estimation with statistical significance, 7×
less testing time is wasted for stop-time decisions, and one to

two orders of magnitude more precise in residual risk estimation

than GoTu.

• To make DP estimation practical, we design two orthogonal opti-

mization methods: a node removal mechanism, which reduces

the number of coverage elements to observe while maintaining

estimation accuracy, and online singleton cluster maintenance,

which removes the need to record observed coverage elements

in each execution.

• We publish implementation, data, and analysis scripts: https:

//anonymous.4open.science/r/struct-disc-prob-7795.

2 Background: Extrapolation of Software
Testing and Residual Risk Analysis

As Dijkstra famously said, “Testing shows the presence, not the

absence, of bugs” [7]; software testing can, therefore, never be ex-

haustive. Software testing is amatter of trade-off : themore testing is

done, the more bugs are found, but at the cost of increased resource

consumption. Thus, questions like “How much can the software be
tested?” “Have we reached the limits of what testing can achieve?”
and “How quickly are we approaching those limits?” are fundamental

to the testing process. Among these questions, residual risk analysis

seeks to estimate the probability that the next input
2
will trigger a

bug that has not yet been found [2]. If residual risk is high, testing

should continue to uncover hidden bugs. Conversely, if residual risk

is low, further testing may be inefficient, and resources might be

better allocated elsewhere. Yet, determining the exact residual risk

presents a chicken-and-egg problem: to measure it precisely, we

would need to know which inputs trigger the unknown bugs—but

those bugs are, by definition, unknown, and discovering them is

the very purpose of testing.

Software Testing as a Sampling Process. While it is impossible to

know the exact residual risk, recent studies have confronted this

challenge by estimating an upper bound of the residual risk, and

the key to this is modeling software testing as a sampling process.

STADS [4], the underpinning framework of recent studies, defines

the testing target as the set of classes
3 𝑆 = {𝑠𝑖 }1≤𝑖≤𝑏 (𝑏 = |𝑆 |) that

is the union of the set of coverage elements and bugs in the program

P. The result of the test execution𝑋 = run(P, 𝑖) ⊆ 𝑆 with the input

𝑖 is the set of coverage elements covered by the execution and the

bug if triggered. Software testing is then the sampling process of

executions 𝑋𝑛 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} from the unknown distribution

DP : 2
𝑆 → [0, 1], i.e., DP (𝑋 ), where 𝑋 ⊆ 𝑆 , is the probability of

the random input exercising exactly 𝑋 . In statistics terms, software

testing is the sampling process of the incidence data, where each
sample 𝑋 is the subset of the set of classes 𝑆 , while if the sample is

a single class, it is the abundance data [5].
Given 𝑛 sample test executions 𝑋𝑛

, the residual risk 𝑟 (𝑛) is the
probability that the next sample 𝑋𝑛+1 triggers a bug not yet found.

Two quantities related to the residual risk are defined: the discovery
probability (DP) 𝑚 and the coverage rate 𝑈 (also known as the

discovery rate in applied statistics). The DP𝑚(𝑛) is the probability
of the next sample 𝑋𝑛+1 belonging to any of the unseen classes

so far. The DP is the best possible upper bound on the residual risk

when no prior information exists about which classes are bugs. The

coverage rate𝑈 (𝑛) is the expected number of unseen classes in the

next sample. By definition, the coverage rate 𝑈 upper-bounds the

DP𝑚, and the DP𝑚 upper-bounds the residual risk 𝑟 . Formally, let

𝑆𝑛 ⊆ 𝑆 be the set of classes observed in the 𝑛 samples, 𝑆bug ⊂ 𝑆

be the set of bugs, 𝑝𝑋 = DP (𝑋 ), and X be the set of all possible

samples 𝑋 , i.e., X = {𝑋 |𝑋 ⊆ 𝑆, 𝑝𝑋 > 0}. Then,

𝑟 (𝑛) =
∑︁
𝑋 ∈X

𝑝𝑋 · I((𝑋 \ 𝑆𝑛) ∩ 𝑆bug ≠ ∅), (1)

𝑚(𝑛) =
∑︁
𝑋 ∈X

𝑝𝑋 · I(𝑋 \ 𝑆𝑛 ≠ ∅), (2)

𝑈 (𝑛) =
∑︁
𝑋 ∈X

𝑝𝑋 · |𝑋 \ 𝑆𝑛 |, (3)

where I(·) is the indicator function that returns 1 if the condition

is true and 0 otherwise. For notational simplicity, we omit the

argument𝑛 in 𝑟 (𝑛),𝑚(𝑛), and𝑈 (𝑛) when it is clear from the context.

In a time-dependent context, where the number of samples at time

𝑡 is 𝑛𝑡 , we use 𝑟 (𝑡), 𝑚(𝑡), and 𝑈 (𝑡) to denote the corresponding

quantities evaluated at 𝑛𝑡 . Note that if the samples are abundance

2
Here, input is used interchangeably with test case.

3
This paper uses the terms ‘class’ (regarding the context of the statistics), ‘coverage
element’ (regarding the software testing context), and ‘node’ (regarding the graph

theory for the control-flow graph) interchangeably.
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data, i.e., each sample is a single class, then the DP𝑚 is the same

as the coverage rate𝑈 .

Similar to STADS, we initially consider the fixed sampling dis-

tribution, i.e., the samples 𝑋𝑛
from the distribution DP are the

collection of the random variables 𝑋𝑖 that are i.i.d., during the dis-

cussion of the DP estimation (Section 3). Several studies have dealt

with the adaptive sampling distribution [4, 20], where the distribu-

tion changes as time goes on, while they all relied on the theoretical

framework of the fixed sampling distribution. Later, we empirically

investigate the performance of our estimator in the presence of an

adaptive sampling distribution in Section 5.4.

Good-Turing Estimator for Residual Risk Analysis. The Good-
Turing estimator (GoTu) [12] is primarily used in software testing

to estimate the coverage rate as the upper bound on the DP and,

consequently, the residual risk [2, 4]. Given the samples 𝑋𝑛
, GoTu

estimates the coverage rate 𝑈 based on the frequency of the ob-

served classes. To be more specific, let 𝑉1 be the set of singleton

classes, i.e., the classes observed only once in 𝑋𝑛
,

𝑉1 =

{
𝑠𝑖

���� 𝑠𝑖 ∈ 𝑆, ∑︁
𝑋 ∈𝑋𝑛

I(𝑠𝑖 ∈ 𝑋 ) = 1

}
. (4)

GoTu estimates 𝑈 as 𝑈𝐺 = |𝑉1 |/𝑛, the ratio of the number of sin-

gleton classes to the number of executions. GoTu is known to

overestimate the coverage rate 𝑈 [20] and, thus, conservatively

overestimates the DP 𝑚 and the residual risk 𝑟 . Applying GoTu

gives, for the first time, the non-trivial upper bound of the resid-

ual risk in the software testing, which can be used to inform the

decision-making process in the software testing.

Hereafter, we assume no bug is found within the current testing

campaign (𝑋𝑛
), which is the typical assumption in software testing;

if the bug is found, the testing campaign will be terminated, and the

residual risk is no longer meaningful. We also refer to 𝑆 as the set

of coverage elements regarding statistical estimation purposes, as

no bug has been found in 𝑋𝑖 ∈ 𝑋𝑛, 𝑋𝑖 ⊆ 𝑆 so far. Similarly, 𝑏 = |𝑆 |
is the number of coverage elements in the software.

Challenges of GoTu for residual risk analysis. While they opened

the door to foresee the future of software testing and to inform the

decision-making process, the current residual risk analysis relying

on GoTu has two inherent challenges:

• Challenge 1. GoTu estimates the coverage rate𝑈 , not the DP𝑚.

By nature, two layers of overestimation,𝑈 to𝑚 and𝑚 to 𝑟 , are

inevitable when using GoTu for the residual risk analysis, which

may lead to excessive optimism about finding a new bug.

• Challenge 2. GoTu assumes independence between the classes,

which is far from the reality of software. Some coverage elements

or bugs are reachable only if another coverage element is reached.

The following example illustrates how GoTu overestimates the

DP in software testing due to the challenges. Figure 1a shows a

simplified control-flow graph of an imaginary software, where

edge probabilities indicate transition likelihoods between coverage

elements. In this software, the right subtree, with execution paths

of length 20-30, is frequently visited compared to the left subtree,

whose paths are significantly longer, around 1,000. The first and

the second columns of Figure 1d show the hypothetical number of

singleton classes |𝑉1 | as the number of executions 𝑛 increases.

• Evidence of challenge 1. Given the single execution, the number of

visited coverage elements is 23, which is the number of singletons.

Therefore, 𝑈𝐺 = 23.0. As the DP 𝑚 is a probability and the

estimate is larger than 1, the estimate is not useful, at all.

• Evidence of challenge 2. Assume that after 100 executions, the

left subtree was first visited. Since execution paths in the left

subtree are significantly longer due to dependencies between

coverage elements, a sharp increase in singleton classes |𝑉1 | is
observed; in our example, |𝑉1 | increases from 4 to 1021 when

𝑛 changes from 99 to 100. This causes a massive surge in the

𝑈𝐺 , demonstrating the unreliability of GoTu as the (upper bound

of the) DP𝑚. Ideally, a DP should not experience a significant

change due to a single execution in the long run. This sharp

increase persists for a while, as the left subtree is rarely visited.

3 Dependency-aware Residual Risk Analysis
In this work, we propose a dependency-aware residual risk analysis

that considers the structural aspect of the software to tackle the

challenges of the current residual risk analysis.

3.1 Dependency-aware DP Estimation
To address the challenges of GoTu, we introduce dependency-aware
DP estimation. We build and later improve on Ma and Chao’s sam-

ple coverage estimation [22]. Their approach was inspired by the

structure of the ‘seven-character quartet’ in Chinese poetry, which

consists of 7 × 4 characters, where many characters frequently co-
occur to maintain rhyme; multiple singleton characters can appear

together in a single line, similar to coverage elements in software.

Ma and Chao designed an estimation method for sample coverage

𝑐 , which is the complement of DP (𝑐 = 1 −𝑚) in abundance data

while accounting for class dependencies.

The key approach of Ma and Chao’s estimation that makes it

applicable regardless of the independence between the classes is to

consider a singleton in a sample-wise manner rather than a class-
wise manner. Given the samples𝑋𝑛

of size𝑛, it first identifies the set

of singletons 𝑉1 ⊆ 𝑆 . Instead of computing the ratio of the number

of singletons |𝑉1 | to the number of samples 𝑛 as GoTu does, Ma

and Chao’s estimator identifies the sub-samples 𝑌𝐷 = {𝑋𝑖 | 𝑋𝑖 ∈
𝑋𝑛 ∧𝑉1 ∩𝑋𝑖 ≠ ∅} that contain at least one singleton and estimates

the DP as the ratio of the number of those samples to the number

of samples 𝑛. Formally, the estimator is computed as

𝑚̂𝐷 =
|𝑌𝐷 |
𝑛

=

∑𝑛
𝑖=1
I(𝑉1 ∩ 𝑋𝑖 ≠ ∅)

𝑛
. (5)

In their work, Ma and Chao proved that the estimator consistently
estimates the DP in the abundance data with the dependencies

between the classes, i.e., when the number of samples 𝑛 →∞, the
estimator converges to the DP in probability: 𝑚̂𝐷

𝑝
−→𝑚.

Figure 1 demonstrates how the estimator solves the challenges of

GoTu for DP estimation. By definition, the number of sub-samples

|𝑌𝐷 | is always at most the number of samples 𝑛. Thus, Ma and

Chao’s estimator 𝑚̂𝐷 is always at most 1 (which is a property we

expect from a probability estimator). The set of all new coverage

elements appearing together (due to dependencies) in a single ex-

ecution is regarded as a single execution having a singleton. The

fourth column (|𝑌𝐷 |) of Figure 1d, therefore, shows an increase of
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(a) Coverage over CFG after
100th execution

(b) Coverage over CFG after
190th execution

(c) Coverage record matrix (𝑛(=190): # samples,
𝑏: # coverage elements)

𝑛 |𝑉1 | 𝑈𝐺 |𝑌𝐷 | 𝑚̂𝐷

1 23 23.0 1 1.0

· · · · · · · · ·
99 4 0.04 2 0.02

100 1021 10.21 3 0.03

101 1021 10.11 3 0.03

· · · · · · · · ·
189 1019 5.39 2 0.01

190 1533 8.07 3 0.02

(d) |𝑉1 |, 𝑈̂𝐺 , |𝑌𝐷 |, and 𝑚̂𝐷 , given
𝑋𝑛

Figure 1: Example illustrating challenges of GoTu in DP estimation and the effect of the dependency-aware estimator. In (a), (b),
and (c), white, gray, and red indicate unvisited, visited, and singleton coverage elements, respectively. In (a) and (b), the green
arrow represents the execution path.

1 at the 100th execution, even though many new singletons are

observed in the second column (|𝑉1 |). Note that the set of single-
tons evolves as new samples are observed. Figure 1b shows the

control-flow graph of the software after the 190th execution, which

traversed the left subtree for the second time—overlapping coverage

elements are discarded from the singletons, and new ones are in-

troduced. Even though ∼500 new singletons are added in the 190th

execution (the last row of Figure 1d), the number of sub-samples

|𝑌𝐷 | only increases by 1. The last column of Figure 1d shows Ma

and Chao’s estimator 𝑚̂𝐷 as the number of executions 𝑛 increases.

Scalability Issue of Ma and Chao’s Estimator. Ma and Chao’s esti-

mator [22] checks singletons and the executions containing them

after all the execution samples are observed. Thus, it must track

which coverage elements are observed in each execution through-

out testing as the coverage record matrix shown in Figure 1c. Its

space complexity is 𝑂 (𝑛 · 𝑏), where 𝑛 is the number of executions

and 𝑏 is the number of coverage elements. This complexity can be a

bottleneck for software testing, typically in industry-level software,

as 𝑏 can be excessively large. Moreover, automated software testing,

such as fuzzing [10], can execute thousands of tests per second,

further exacerbating the space overhead.

3.2 Node Removal Mechanism
To mitigate the space complexity issue and make the DP estima-

tion practical, the first optimization method we suggest is the

dependency-aware node removal mechanism. This aims to reduce

the number of coverage elements 𝑏 to be observed in advance while

preserving the accuracy of the DP estimation. We formally prove

which nodes can be safely removed to ensure that the optimiza-

tion preserves the overapproximation of discovery probability over

residual risk. Without this formal justification, arbitrary node re-

moval could reduce |𝑌𝐷 |, leading to an underestimated discovery

probability and a false sense of program safety.

Principle of Node Removal. The principle of node removal is to

identify the nodes–coverage elements in the control-flow graph–

that do not affect the dependency-aware DP estimation even if

unobserved; we call these nodes safely ignorable from 𝑆 during

observation for the dependency-aware DP estimation.

Definition 3.1 (Safely Ignorable). Let 𝑆 be the set of coverage

elements in program P. We call 𝑠 ∈ 𝑆 as safely ignorable if, for all
samples 𝑋𝑛 ∼ DP of some size 𝑛 ∈ N, |𝑌𝐷 | = |𝑌𝐷 |, where
• 𝑉1 ⊆ 𝑆 is the set of all singletons in 𝑋𝑛

,

• 𝑌𝐷 = {𝑋𝑖 | 𝑋𝑖 ∈ 𝑋𝑛 ∧ 𝑋𝑖 ∩𝑉1 ≠ ∅},
• 𝑋𝑛 = {𝑋𝑖 | 𝑋𝑖 ∈ 𝑋𝑛 ∧ 𝑋𝑖 = 𝑋𝑖 \ {𝑠}},
• 𝑉1 ⊆ 𝑆 is the set of all singletons in 𝑋𝑛

, and

• 𝑌𝐷 = {𝑋𝑖 | 𝑋𝑖 ∈ 𝑋𝑛 ∧ 𝑋𝑖 ∩𝑉1 ≠ ∅}.

The situation where |𝑌𝐷 | remains unchanged even after remov-

ing 𝑠 ∈ 𝑆 from the observation implies that the DP estimate 𝑚̂𝐷 is

the same, regardless of whether 𝑠 is observed. The following theo-

rem describes the condition under which a node is safely ignorable.

Theorem 3.2. Let 𝑠𝑖 ∈ 𝑆 be a coverage element in program P. For
any set of samples 𝑋𝑛 ∼ DP , if 𝑠𝑖 appears as a singleton in some
sample 𝑋𝑘 ∈ 𝑋𝑛 , and there always exists 𝑠 𝑗 ∈ 𝑆 such that 𝑠 𝑗 ≠ 𝑠𝑖 , 𝑠 𝑗
is also a singleton, and 𝑠 𝑗 ∈ 𝑋𝑘 , then 𝑠𝑖 is safely ignorable.

The proof of Theorem 3.2 follows naturally from the definition

of 𝑌𝐷 in Eq. (5). If 𝑠𝑖 is always a singleton in 𝑋𝑘 whenever 𝑠 𝑗 is

a singleton in 𝑋𝑘 , then 𝑋𝑘 ∈ 𝑌𝐷 even after removing 𝑠𝑖 from the

observation; |𝑌𝐷 | is still the same, and so is the DP 𝑚̂𝐷 .

Node Removal Mechanism. Given the principle of node removal, we

can identify the safely ignorable nodes based on the dominance/post-
dominance in the control-flow graph.

Definition 3.3 (Full Dominance, Full Post-dominance). Let 𝑠𝑖 ∈ 𝑆
be a coverage element in the control-flow graph 𝐺𝑐 = (𝑆, 𝐸, 𝑠𝑒 , 𝑠𝑥 )
of program P, with a control-flow edge set 𝐸, an entry node 𝑠𝑒 , and

an exit node 𝑠𝑥 . Node 𝑠𝑖 is a full dominator of 𝐺𝑐 if it dominates all

its direct successors in𝐺𝑐 , i.e., for any 𝑠 𝑗 ∈ succ(𝑠𝑖 ), every the paths
from 𝑠𝑒 to 𝑠 𝑗 passes through 𝑠𝑖 . Node 𝑠𝑖 is a full post-dominator of
𝐺𝑐 if it is a post-dominator of all of its direct predecessors in 𝐺𝑐 .

Theorem 3.4. Let 𝑠𝑖 ∈ 𝑆 be a coverage element in the control-flow
graph𝐺𝑐 of program P. If 𝑠𝑖 is a full dominator of𝐺𝑐 , then 𝑠𝑖 is safely
ignorable.
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Proof. Let 𝑠𝑖 be a full dominator with the set of direct successors

succ(𝑠𝑖 ). Then, for any set of samples 𝑋𝑛 ∼ DP , if 𝑠𝑖 is a singleton
in some sample 𝑋𝑖 ∈ 𝑋𝑛

, one of its successors in succ(𝑠𝑖 ) is also
executed in 𝑋𝑖 for the first time, i.e., it is a singleton in 𝑋𝑖 , while all

other successors are not executed in 𝑋𝑛
. Thus, 𝑠𝑖 is safely ignorable

based on Theorem 3.2. □

The same argument of Theorem 3.4 holds for the full post-

dominator. We implement the node removal mechanism based on

Theorem 3.4, where full dominators and full post-dominators are

removed from the control-flow graph. The time complexity of the

node removal mechanism depends on two steps: 𝑂 (𝑒 log𝑏) [16],
where 𝑒 and 𝑏 denote the number of edges and nodes in the control-

flow graph, respectively, and𝑂 (𝑏) for node removal. Notably, dom-

inance computation can be performed independently for each func-

tion in the software, ensuring that the node removal mechanism

remains scalable for real-world software testing. The space com-

plexity of the node removal mechanism is 𝑂 (𝑒 + 𝑏).

3.3 Online Singleton Cluster Maintenance
The second optimization method is the online singleton cluster main-
tenance, which reduces the space complexity of the DP estimation

from 𝑂 (𝑛 · 𝑏) to 𝑂 (𝑏), dropping the need to record the observed

coverage elements in each execution. The key idea is to introduce

another concept, the singleton cluster, which is equivalent to the

execution that contains singletons, that are maintainable in 𝑂 (𝑏)
space complexity during the testing process.

Singleton Cluster. The need to maintain the observed coverage

elements in each execution arises because Ma and Chao’s estimator

checks executions with at least one singleton. Yet, which coverage
elements are singletons is unknown in advance until all samples are

observed. To address this, we introduce singleton clusters, sets of
singletons appearing together in the same sample.

Definition 3.5 (Singleton Cluster). Given the samples 𝑋𝑛
of size 𝑛

and the set of singletons 𝑉1 ⊆ 𝑆 , we define an equivalence relation

≡ over 𝑉1 such that 𝑠𝑖 ≡ 𝑠 𝑗 if two singletons 𝑠𝑖 and 𝑠 𝑗 appear

together in the same sample 𝑋 ∈ 𝑋𝑛
. The singleton clusters 𝑉 ≡

1
=

{𝑉 1

1
,𝑉 2

1
, . . . ,𝑉𝑘

1
}, where 𝑘 is the number of singleton clusters, are

the equivalence classes induced by ≡.

For instance, in Figure 1c, the set of singletons (red cells) in

the same row is a singleton cluster. We prove that the number of

singleton clusters |𝑉 ≡
1
| is the same as the number of executions that

contain at least one singleton |𝑌𝐷 |.

Theorem 3.6. Given the samples 𝑋𝑛 of size 𝑛 and the set of sin-
gletons 𝑉1 ⊆ 𝑆 , the number of executions that contain at least one
singleton class is equal to the number of singleton clusters, i.e.,

𝑛∑︁
𝑖=1

I(𝑉1 ∩ 𝑋𝑖 ≠ ∅) = |𝑉 ≡1 |. (6)

Proof. The proof naturally follows by showing that there is a

one-to-one correspondence between executions containing at least

one singleton class and the singleton clusters. Every singleton in

the same singleton cluster appears together in the same sample 𝑋

as they can appear in precisely one sample (injective). Let 𝑋𝑠𝑖 be

the sample containing at least one singleton class 𝑠 𝑗 ∈ 𝑉1. Then,𝑉
𝑖
1
,

Algorithm 1: Online singleton cluster maintenance

Input: 𝑋𝑛
: the stream of samples

Output:𝑉 ≡
1
: singleton cluster set

1 𝑆𝑛 ← ∅; 𝑉1 ← ∅; 𝑉 ≡
1
← ∅

2 for 𝑋𝑖 ∈ 𝑋𝑛 do // iterate over the stream of samples
3 𝐵 ← 𝑋𝑖 ∩𝑉1 ; // observed class set 𝐵

4 𝑉1 ← 𝑉1 \ 𝐵 ; // remove classes in 𝐵 from 𝑉1 and 𝑉 ≡
1

5 for𝑉 𝑗

1
∈ 𝑉 ≡

1
do

6 𝑉
𝑗

1
← 𝑉

𝑗

1
\ 𝐵

7 𝐷 ← 𝑋𝑖 \ 𝑆𝑛 ; // the newly observed classes 𝐷

8 if 𝐷 ≠ ∅ then // Add 𝐷 to 𝑆𝑛, 𝑉1, and 𝑉 ≡
1

9 𝑆𝑛 ← 𝑆𝑛 ∪𝐷 ; 𝑉1 ← 𝑉1 ∪𝐷 ; 𝑉 ≡
1
← 𝑉 ≡

1
∪ {𝐷 }

10 return𝑉 ≡
1

the singleton cluster that includes the singleton class 𝑠 𝑗 , is the only

singleton cluster that appears in sample 𝑋𝑠𝑖 , as all the singletons

in the same singleton cluster appear together in the same sample

(surjective). □

Thus, the dependency-aware estimate of the DP in Eq. (5) can be

equivalently computed by |𝑉 ≡
1
|/𝑛, which is the number of singleton

clusters divided by the number of executions.

Online Maintenance of Singleton Clusters. While they are identical

(Theorem 3.6), the key advantage of singleton cluster-based esti-

mation against the execution-with-singleton approach is that the

(number of) singleton clusters can be maintained online, i.e., during
the testing process, with 𝑂 (𝑏) space complexity. This is because

the change from the singleton clusters in the previous sample to

the singleton clusters in the current sample is solely determined by

the set of coverage elements in the current sample.

Algorithm 1 presents the algorithm for computing the single-

ton clusters 𝑉 ≡
1

from the stream of samples 𝑋𝑛
with 𝑂 (𝑏) space

complexity. The algorithm maintains the observed class set 𝑆𝑛 , sin-

gleton set 𝑉1, and singleton cluster set 𝑉 ≡
1
. While iterating over

𝑋𝑛
, the algorithm computes the set of outdated (observed more

than once) singletons 𝐵 and the set of newly observed classes 𝐷 in

each sample 𝑋𝑖 . It then updates the sets 𝑆𝑛 , 𝑉1, and 𝑉
≡
1

accordingly

by removing the outdated singletons from 𝑉1 and 𝑉
≡
1
and adding

the newly observed classes to 𝑆𝑛 , 𝑉1, and 𝑉
≡
1
. The algorithm dis-

cards previous samples after each update, so its space complexity

depends only on the sizes of the sets 𝑉 ≡
1
, 𝑉1, and 𝑆𝑛 , which are

bounded by 𝑂 (𝑏), as each set’s maximum size is 𝑏 (the number of

classes). Given Algorithm 1, dependency-aware DP estimation can

be computed with 𝑂 (𝑏) space complexity, making it practical for

real-world software testing.

4 Experimental Design
4.1 Research Questions
We aim to evaluate the effectiveness of the dependency-aware

estimation in estimating the discovery probability (DP) for the

residual risk analysis. We also aim to evaluate the effectiveness

of the optimization methods in reducing the space complexity of
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the dependency-aware DP estimation. We use fuzzing as the pri-

mary application of the evaluation. To this end, we formulate the

following research questions:

RQ1. To what extent is the dependency-aware estimation more
accurate in estimating the DP than the dependency-ignorant esti-
mation?

The practical use of DP estimation is to obtain an upper bound on

the residual risk in SUTs. We evaluate how much the dependency-

aware estimator reduces estimation error compared to GoTu. Our

evaluation consists of both directly measuring the DP estimation

error and assessing its practical impact on the stopping decision of

the testing process. Specifically, we consider the most common use

case of DP estimation in fuzzing, where the estimation serves as

the stopping decision maker: given a DP threshold 𝜖 , testing stops

when the estimated DP reaches this threshold.

RQ2. How much does the node removal mechanism reduce the
space complexity of the dependency-aware DP estimation?

Wepropose two orthogonal optimizationmethods for dependency-

aware DP estimation: online singleton cluster maintenance and

dependency-aware node removal. The second research question

evaluates how many coverage elements are safely ignorable by the

node removal mechanism. Reducing the number of coverage ele-

ments proportionally decreases the overhead of observing residual

risk. Not that online singleton cluster maintenance is directly incor-

porated into the dependency-aware estimator and is not separately

evaluated, as it is a theoretically proven optimization that reduces

the space complexity from𝑂 (𝑛 ·𝑏) to𝑂 (𝑏), eliminating dependence

on the number of executions 𝑛. Instead, its impact is reflected in

the number of executions during fuzzing.

RQ3. How accurate is the dependency-aware estimation in pre-
dicting residual risk, i.e., the probability of uncovering unseen
bugs?

Here, we directly evaluate the DP estimates in the context of

the residual risk, i.e., the probability of finding an undiscovered

bug. Naturally, the DP would overestimate the bug-finding proba-

bility. However, we argue that accounting for dependencies in the

estimation yields a more accurate bug-finding probability estimate.

RQ4. Does the dependency-aware estimation provide a better esti-
mate than the state-of-the-art estimators for the greybox fuzzing?

So far, we have focused on blackbox fuzzing, where the test cases

are independent and identically (iid) distributed samples from a

fixed distribution. In this research question, we evaluate the effec-

tiveness of the dependency-aware estimation in greybox fuzzing,

where the distribution shifts with each coverage-increasing seed

added to the corpus. We modify the GoTu-based greybox fuzzing

DP estimator [4] by substituting the number of singleton clusters

for the number of singletons in the formula and evaluate its perfor-

mance against the original.

Figure 2: Illustration of DP estimation and ground truth com-
putation. The green area represents samples up to time 𝑡 used
for estimation (𝑛𝑡 = 100), while the red area shows auxiliary
executions for empirical DP calculation.

4.2 Metrics and Subjects
For RQ1, we first measure the accuracy of the estimators by their

absolute errors compared to the ground truthDP during the blackbox

fuzzing; at a particular time point 𝑡 during the fuzzing, we compute

the DP estimation 𝑚̂ using the dependency-aware estimator (𝑚̂𝐷 )

and GoTu (𝑚̂𝐺 = 𝑈𝐺 , regarding GoTu as the dependency-ignorant

DP estimator) and compare them to the ground truth DP.

Since the true DP for an arbitrary software is unknown, we use

the empirical DP as the ground truth: at the time point 𝑡 , where

the number of executions (i.e., samples) and the set of observed

coverage elements so far are 𝑛𝑡 and 𝑆𝑛𝑡 , respectively, we compute

the empirical DP 𝑚̂emp (𝑡) by countering the number of executions

that cover the coverage element that is not in 𝑆𝑛𝑡 from 𝑛𝑡 additional

auxiliary executions, {𝑋𝑛𝑡+1, 𝑋𝑛𝑡+2, . . . , 𝑋2𝑛𝑡 }:

𝑚̂emp (𝑡) =
∑𝑛𝑡
𝑖=1
I(𝑋𝑛𝑡+𝑖 \ 𝑆𝑛𝑡 ≠ ∅)

𝑛𝑡
. (7)

Figure 2 illustrates how the estimates and the ground truth DP are

computed. The absolute error is then computed as AE{esti} (𝑡) =
|𝑚̂{esti} (𝑡) −𝑚̂emp (𝑡) |. For the compatible comparison, we measure

the relative absolute error as RE{esti} (𝑡) = AE{esti} (𝑡)/𝑚̂emp (𝑡). The
evaluation over the time interval [0,𝑇 ] is conducted by averaging

the error over the time points 𝑡 :
∫ 𝑇

0
{error} d𝑡 . We also perform a sta-

tistical significance test on the absolute errors using the two-sided

Wilcoxon signed-rank test [28] and rank-biserial correlation [6] to

assess the difference between the estimators.

To evaluate the stopping decision, we compare 𝑇emp , the time

when the empirical DP first reaches 𝑚̂thres , with 𝑇𝐺 and 𝑇𝐷 , the

times when GoTu and the dependency-aware estimator reach𝑚̂thres ,

respectively. The 𝑚̂thres candidates are chosen from 10
−𝑘

for 𝑘 ≥ 3;

for each subject, we select those reached at least once in all repeated

fuzzing runs. Similar to DP estimation evaluation, we measure the

absolute error of the stopping decision as AE𝑇esti = |𝑇esti −𝑇emp | and
the relative absolute error as RE𝑇esti = AE𝑇esti/𝑇emp .

For RQ2, we compute the reduction ratio of the number of

coverage elements to be observed using the node removal mecha-

nism. The reduction ratio is computed as |𝑆rm |/|𝑆 | (|𝑆 | = 𝑏), where

𝑆rm ⊆ 𝑆 is the reduced set of coverage elements after the node

removal mechanism. We also measure the time the node removal

mechanism takes to compute the reduced set of coverage elements.

Finally, we compare the fuzzing performance of the fuzzers with

and without the node removal mechanism in terms of the number of

executions per time. Although reducing the cost of coverage checks
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during fuzzing was not our primary goal, the node removal mecha-

nism inherently reduces this overhead, contributing to improved

timewise efficiency in fuzzing.

ForRQ3, we compare the DP estimates with the residual risk, i.e.,

the probability of finding a bug that has not yet been found. Similar

to RQ1, we use the empirical residual risk as the ground truth.

Let each unique bug 𝑐𝑖 ∈ 𝐶 (1 ≤ 𝑖 ≤ 𝑚) be first discovered at the

𝑛𝑖 -th execution. The empirical probability of finding bug 𝑐𝑖 is then

P̂r(𝑐𝑖 ) = 𝑛𝑖/𝑛. The empirical residual risk 𝑟emp at time point 𝑡 with

𝑛𝑡 executions is given by the sum of the empirical probabilities of

finding bugs that have not yet been discovered: 𝑟emp =
∑𝑚
𝑖=1
I(𝑛𝑖 >

𝑛𝑡 ) · P̂r(𝑐𝑖 ). We then compute the relative absolute error for the

residual risk estimation as RE𝑟{esti} = |𝑚̂{esti} − 𝑟emp |/𝑟emp .

Böhme et al. [4] suggested the various DP estimators for grey-

box fuzzing, where the adaptive bias keeps changing the sampling

distribution; thus, the existing estimator, GoTu, underestimates

the DP. They adjusted GoTu to design the new estimator while

handling the adaptive bias. Yet, as dependency ignorance remains

in the estimator, we propose the dependency-aware estimator for

the greybox fuzzing. We use both estimators suggested by Böhme

et al. [4], the Reset estimator and the Mean Local estimator, as

baselines for the comparison. Leveraging the fact that the species

distribution changes only upon the addition of a new seed, the

𝛼-reset estimator considers incidence (i.e., coverage) data only from

the point when the 𝛼-th last seed was added—effectively using a

moving window. A greybox campaign F is a sequence of blackbox

campaigns, F = ⟨𝐹1, 𝐹2, . . . , 𝐹𝑘 ⟩, where 𝑘 denotes the number of

new seeds that have been added to the initial seed corpus through-

out the campaign. Consequently, the set of samples 𝑋𝑛
generated

byZ is partitioned into 𝑘 segments, ⟨𝑍1, 𝑍2, . . . , 𝑍𝑘 ⟩, where each
segment 𝑍𝑖 = (𝑋𝑛𝑖−1+1, 𝑋𝑛𝑖−1+2, . . . , 𝑋𝑛𝑖 ) (with 𝑛0 = 0, 𝑛𝑘 = 𝑛) con-

tains the samples generated between the addition of the (𝑖 − 1)-th
and 𝑖-th seeds (i.e., the sub-campaign 𝐹𝑖 ). The reset estimator is

computed as:

𝑈Reset (𝑛) =
𝑓1,𝛼

𝑛
, (8)

where 𝑓1,𝛼 = |{𝑠 | 𝑠 ∈ 𝑆,
∑𝑘
𝑖=𝑘−𝛼+1

∑
𝑋 ∈𝑍𝑖

I(𝑠 ∈ 𝑋 ) = 1}| is the
number of singletons in the last 𝛼 segments. The key of the Mean
Local estimator is to manage the coverage record per seed, estimat-

ing the DP if the seed is selected to mutate and then aggregating

the estimations to get the final DP.

𝑈MLG (𝑛) =
∑︁
𝑡 ∈𝐶𝑛

𝑞𝑡 ·


1 if 𝑛𝑡 = 0

1

𝑛𝑡+2 if |𝑉 𝑡
1
| = 0

|𝑉 𝑡
1
|

𝑛𝑡
otherwise.

(9)

Eq. (9) shows the Mean Local estimator based on GoTu, where 𝐶𝑛
is the set of seeds in the corpus at the point where 𝑛 executions are

done, 𝑞𝑡 is the probability of selecting the seed 𝑡 to mutate, 𝑛𝑡 is the

number of times the seed 𝑡 has been selected to mutate, and 𝑉 𝑡
1
is

the set of singletons when the seed 𝑡 is selected to mutate. In their

experiments, Böhme et al. [4] showed that the Mean Local estimator

performs best in greybox fuzzing, whereas the Reset estimator at

times underestimates the DP. Against these baselines, we design the

dependency-aware Mean Local estimator by substituting the number

of singletons |𝑉 𝑡
1
| for the number of singleton clusters |𝑉 ≡

1
| in the

Mean Local estimator (Eq. (9)). InRQ4, we evaluate the dependency-
aware Mean Local estimator against the Reset estimator and the

Mean Local estimator based on GoTu in the greybox fuzzing, similar

to the evaluation in RQ1.
For RQ1, RQ2, and RQ4, we use benchmark subjects from

FuzzBench [23], a widely used fuzzing benchmarking framework

that provides diverse real-world benchmarks at an industrial scale.

We gather six subjects from FuzzBench previously used in a recent

residual risk analysis study [4]: Freetype2, Jsoncpp, Libpcap, Libpng,
Libxml2, and Zlib. These are security-critical programs that did not

crash within the first 10
9
generated test inputs, ensuring that resid-

ual risk analysis remains meaningful. The sizes of these subjects

in terms of the number of basic blocks are 1.8K, 8.8K, 10.5K, 14.4K,

46.1K, and 93.9K. As this set contains only two large programs, we

decided to add two more subjects Libjpeg and Sqlite3, which have

36.8K and 58.3K basic blocks, respectively, to increase the diversity

of our subjects in terms of size. The statistics of the size (𝑏) of these

subjects are presented in Table 4. For the bug-based evaluation

in RQ3, we consider subjects from both FuzzBench and previous

studies [4, 30], selecting those where bugs can be found within

24 hours of blackbox fuzzing. In total, we identify four subjects,

Assimp (commit ID: 4d451fe), File (2d5f858), Harfbuzz (17863bd),
and Libxml2 (99a864a), for the bug-based evaluation.

4.3 Implementation and Setup
Wemodify theAFL++ [10] fuzzer to implement the blackbox fuzzing.

We disable the coverage-guidance features of AFL++ by defining

the macro IGNORE_FINDS. We also discard its deterministic stages,

which mutate inputs in a predefined order and thus violate the iid
sampling assumption. By default, we use both the node removal

mechanism and the online singleton cluster maintenance mecha-

nism (Algorithm 1).

While the expected value of our discovery probability (DP) esti-

mator (Eq. (5)), as well as that of GoTu, is strictly greater than zero

for 𝑛 > 0, the corresponding random variables may still evaluate to

zero. This is because the number of singletons (|𝑉1 |) or singleton
clusters (|𝑉 ≡

1
|) may become zero during fuzzing due to its stochas-

tic nature-an outcome that is not meaningful in our context. To

prevent this, we conservatively set the number of singletons (|𝑉1 |)
or singleton clusters (|𝑉 ≡

1
|) to 1 when they are zero, respectively,

thereby avoiding a zero DP estimate. Similarly, to avoid assigning

zero probability in empirical DP, we replace it with the minimum

non-zero empirical DP observed during the entire fuzzing campaign

whenever it evaluates to zero. As the baseline for greybox fuzzing,

we set the hyperparameter 𝛼 of the Reset estimator to 1, which falls

within the recommended range from Böhme et al. [4].

We evaluate the estimation performance on a 24-hour fuzzing

campaign; to do so, we run the fuzzing for 48 hours to compute

the empirical DP and empirical residual risk. Experiments are con-

ducted in a Docker container with 64 cores of AMD EPYC 7713P @

2.0 GHz and 251 GB of memory. To avoid selection bias, we repeat

fuzzing with the same configuration 20 times per subject for the DP

estimation research question (RQ1, RQ4) and 5 times per subject

for other research questions.
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Figure 3: DP estimation for Freetype2 and Zlib. The x-axis
(time in minutes) and y-axis are in log scale. Lines represent
averages over 20 repetitions, with shaded areas showing 95%
confidence intervals.
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Figure 4: Absolute error of DP estimation over time for
FuzzBench subjects. The x-axis (time in minutes) and y-axis
are in log scale. Bars represent the mean absolute error per
interval, with error bars showing 95% confidence intervals.

5 Results
5.1 RQ1: Discovery Probability Estimation
DP Estimation Accuracy. Figure 3 shows the discovery probability

(DP) estimation result of the dependency-aware estimator (𝑚̂𝐷 ,

green line) and GoTu (𝑚̂𝐺 , orange line), along with the empirical

DP (𝑚̂emp , blue line), the ground truth of our experiment for two

of the FuzzBench subjects: Freetype2 and Zlib.4 The dependency-
aware estimator consistently provides an accurate estimation of the

DP compared to GoTu. In most cases, the area of the 95% confidence

interval of the dependency-aware estimator substantially overlaps

with the ground truth DP, i.e., what is empirically observed in the fu-

ture fuzzing process. In contrast, in most cases, GoTu overestimates

the DP compared to the ground truth DP. Such overestimation

demonstrates the challenge of using GoTu for the DP estimation we

have discussed in Section 2. Figure 4 shows the absolute error of DP

estimation over time for all the subjects. The error bars represent

theAE per time interval, with the darker dashed bars and the lighter

solid bars representing AE𝐷 and AE𝐺 , respectively. The lines show
the average empirical DP at each time interval. The figure demon-

strates that the error gap between the dependency-aware estimator

and GoTu is relatively consistent over time, except for Libpcap,
where the difference becomes significant after six hours.

4
The results for the other subjects are provided in the supplementary material.

Table 1: DP estimation error (AE) and relative error (RE) aver-
aged over the fuzzing campaign. The table showsmean errors
across 20 repetitions per subject, with the last two columns
reporting statistical significance (𝑝) and effect size (𝛿).

Subject 𝑚̂emp AE𝐺 AE𝐷 RE𝐺 RE𝐷
AE𝐷
AE𝐺 𝑝 𝛿

Sqlite3 1.01e-04 1.02e-03 1.69e-05 8.50 0.14 0.02 2e-06 1.00

Freetype2 5.38e-05 1.45e-04 9.41e-06 3.85 0.20 0.07 2e-06 1.00

Libxml2 2.95e-04 4.13e-04 3.11e-05 0.71 0.11 0.08 2e-06 1.00

Libjpeg 2.29e-06 5.56e-06 7.45e-07 2.09 0.46 0.13 2e-06 1.00

Zlib 3.61e-07 6.80e-07 1.70e-07 2.55 1.48 0.25 2e-06 1.00

Libpcap 2.76e-08 9.38e-08 3.25e-08 15.87 4.71 0.35 2e-04 0.99

Jsoncpp 1.91e-07 1.45e-07 1.03e-07 1.26 0.94 0.71 1e-05 0.99

Libpng 1.84e-06 1.33e-06 1.27e-06 1.62 1.10 0.95 4e-04 0.92

Table 2: Records from a single fuzzing run on the Freetype2
and Libpng subjects. ‘#New’ denotes the number of execu-
tions covering elements not in 𝑆𝑛𝑡 among {𝑋𝑛𝑡+1, · · · , 𝑋2𝑛𝑡 }.

Freetype2 Libpng
𝑡 𝑆𝑛𝑡 |𝑉1 | |𝑉 ≡

1
| #New 𝑡 𝑆𝑛𝑡 |𝑉1 | |𝑉 ≡

1
| #New

1m 3655 183 71 68 1m 1501 59 44 27

10m 4273 207 55 52 10m 1603 31 26 21

1h 4545 200 57 61 1h 1644 9 8 10

6h 4860 254 51 47 6h 1659 9 9 1

24h 5234 425 59 58 24h 1667 6 6 3

Table 1 presents the error statistics of DP estimation, averaged

over the entire fuzzing campaign, to assess estimator accuracy. The

table reports the mean error across 20 repetitions per subject. As

shown, the absolute error of GoTu often exceeds the empirical

DP, resulting in a relative absolute error greater than 1.0 in seven

out of eight subjects, reaching up to 16. In contrast, the absolute

error of the dependency-aware estimator is significantly lower: five

and seven subjects exhibit a relative absolute error below 1.0 and

2.0, respectively, resulting in a median error across subjects that

is one-fourth that of GoTu. A statistical significance test on the

absolute errors across 20 repetitions confirms that the dependency-

aware estimator significantly outperforms GoTu (𝑝-value < 0.001,

effect size 𝛿 > 0.9). For Libpcap, although the dependency-aware

estimator outperforms GoTu, both exhibit high relative absolute

error. This stems from blackbox fuzzing’s limited effectiveness,

which restricts coverage discovery. The low empirical DP makes

accurate estimation challenging for both estimators.

We further analyze when and how the dependency-aware es-

timator outperforms GoTu by examining fuzzing records. Table 2

presents records from a single fuzzing run on the Freetype2 and
Libpng subjects, reporting the number of discovered coverage ele-

ments (𝑆𝑛𝑡 ), singletons (|𝑉1 |), singleton clusters (|𝑉 ≡
1
|), and ‘#New,’

which counts executions covering previously undiscovered ele-

ments. Since #New serves as the numerator in empirical discov-

ery probability computation, it provides a reference for estimator

accuracy—similar to |𝑉1 | and |𝑉 ≡
1
|, which act as numerators for

their respective estimators, all sharing the denominator 𝑛. Thus,

an estimator’s accuracy is reflected in its closeness to #New. The

Freetype2 record reveals a large gap between the number of sin-

gletons and singleton clusters, a trend seen in many subjects. This



Dependency-aware Residual Risk Analysis Conference’17, July 2017, Washington, DC, USA

Table 3: Stop time estimation, error (AE), and relative error
(RE).𝑚thres denotes the threshold for the stopping criterion.
The table showsmean values across 20 repetitions per subject.

Subject 𝑚thres 𝑇emp 𝑇𝐺 𝑇𝐷 AE𝑇
𝐺

AE𝑇
𝐷

RE𝑇
𝐺

RE𝑇
𝐷

AE𝑇
𝐷

AE𝑇
𝐺

Sqlite3 10
−3

6.4 355.9 7.2 349.47 0.79 54.18 0.12 0.00

Sqlite3 10
−4

328.5 1440.0 348.2 1111.46 19.69 3.38 0.06 0.02

Freetype2 10
−3

9.8 26.8 10.7 16.99 0.94 1.74 0.10 0.06

Freetype2 10
−4

92.6 354.6 92.2 262.07 0.34 2.83 0.00 0.00

Libxml2 10
−3

59.2 111.0 57.3 51.89 1.91 0.88 0.03 0.04

Libxml2 10
−4

444.4 673.0 467.6 228.55 23.23 0.51 0.05 0.10

Libjpeg 10
−4

2.1 9.3 2.9 7.16 0.83 3.38 0.39 0.12

Libjpeg 10
−5

42.3 160.7 51.0 118.36 8.64 2.80 0.20 0.07

Libjpeg 10
−6

469.4 1064.5 571.7 595.19 102.31 1.27 0.22 0.17

Zlib 10
−5

8.2 23.4 11.6 15.19 3.36 1.85 0.41 0.22

Zlib 10
−6

65.9 118.6 73.6 52.75 7.75 0.80 0.12 0.15

Zlib 10
−7

240.5 692.9 551.2 452.42 310.77 1.88 1.29 0.69

Libpcap 10
−8

1.6 780.7 567.2 779.05 565.51 474.83 344.68 0.73

Jsoncpp 10
−5

5.3 7.5 6.2 2.19 0.90 0.41 0.17 0.41

Jsoncpp 10
−6

21.1 40.5 34.6 19.40 13.53 0.92 0.64 0.70

Jsoncpp 10
−7

81.7 189.6 163.3 107.98 81.68 1.32 1.00 0.76

Libpng 10
−4

2.9 3.6 2.9 0.68 0.04 0.23 0.01 0.06

Libpng 10
−5

16.4 23.3 18.6 6.94 2.23 0.42 0.14 0.32

Libpng 10
−6

63.7 95.7 87.0 31.93 23.30 0.50 0.37 0.73

Libpng 10
−7

291.7 565.1 539.3 273.41 247.65 0.94 0.85 0.91

explains the significant discrepancy in discovery probability esti-

mates between the estimators and highlights the accuracy of the

dependency-aware estimator, as its estimates align closely with

#New. In contrast, Libpng shows a minor difference between the

two, leading to a smaller accuracy gain for the dependency-aware

estimator over GoTu. This is likely due to Libpng’s smaller |𝑆 |,
which results in shorter execution traces that capture fewer cov-

erage dependencies. Additionally, its coverage discovery saturates

more quickly than in other subjects, further reducing the distinction

between singletons and singleton clusters.

Stop-Time Estimation Accuracy. Table 3 presents stop-time estima-

tion results for each subject and threshold 𝑚thres , chosen based

on empirical DP. The table reports mean values across 20 repeti-

tions per ⟨subject,𝑚thres⟩ pair. As expected from the DP estimation

results, the dependency-aware estimator provides more accurate

stop-time estimates than GoTu. Its relative error is significantly

lower across all subjects and thresholds, except for Libpcap, where
both estimators perform similarly. Excluding Libpcap, all subjects
have a relative error below 0.9 for the dependency-aware estimator,

with a median RE𝑇
𝐷
of 0.17, meaning fuzzing stops less than 17%

later than necessary (mean: 0.32). In contrast, for over half of the

⟨subject,𝑚thres⟩ pairs, GoTu’s relative error exceeds 1.0, reaching
up to 54 (median: 1.27, mean: 4.22), leading to significant resource

waste. Notably, for ⟨Sqlite3, 10
−4⟩, GoTu never reached the thresh-

old within the 24-hour fuzzing campaign in any of the 20 repetitions.

The dependency-aware estimator achieves an absolute error 7×
lower than GoTu, demonstrating its superior performance in stop-

time estimation.

Table 4: The impact of the node removal mechanism.

Subject |𝑆 | |𝑆rm | |𝑆rm |
|𝑆 | 𝑇𝑜.ℎ. 𝜇 (eps) 𝜇 (epsrm) 𝜇

(
epsrm
eps

)
Sqlite3 58,253 32,849 0.56 -82.6s (-29%) 21.93 31.43 1.43

Freetype2 46,051 26,553 0.58 -7.6s (-9%) 51.06 104.05 2.04

Libxml2 93,858 50,573 0.54 -5.7s (-11%) 18.82 50.17 2.67

Libjpeg 36,840 21,788 0.59 -9.9s (-18%) 290.40 1061.58 3.66

Zlib 1,775 986 0.56 -0.6s (-13%) 7043.66 7683.91 1.09

Libpcap 14,355 7,815 0.54 -8.9s (-15%) 5415.95 5664.24 1.05

Jsoncpp 8,780 5,631 0.64 -3.5s (-9%) 2686.26 3370.08 1.25

Libpng 10,463 6,077 0.58 -2.7s (-10%) 2210.39 3140.78 1.42

Avg. 0.57 -15.2s (-14%) 1.83

Answer to RQ1:Our dependency-aware estimator significantly

outperforms the Good-Turing estimator in discovery probability

estimation. Five and seven subjects show a relative absolute

error below 1.0 and 2.0, respectively, with a median error one-

fifth that of the Good-Turing estimator. It also provides accurate

stop time estimates, with an absolute error 7× lower than that

of the Good-Turing estimator.

5.2 RQ2: Effect of Node Removal Mechanism
Table 4 presents the results of the node removal mechanism, report-

ing the number of nodes in the original (|𝑆 |) and reduced control-

flow graphs (|𝑆rm |) along with the proportion of nodes remaining

after removal. Results show a significant reduction in control-flow

graph size, decreasing node count by 36-46% (average: 43%).

Notably, node removal also reduces compilation time overhead.

𝑇𝑜.ℎ. represents this overhead, computed as the difference in compi-

lation time with node removal minus that without it, measured in

seconds (s) and percentage (%). The results show an average reduc-

tion of 15.2s (14%), a consistent trend across subjects with negligible

correlation to subject size. This negative overhead suggests that the

time saved from reducing the number of basic blocks to instrument

outweighs the cost of node removal.

𝜇 (eps) and 𝜇 (epsrm) denote the average executions per second
(eps) during fuzzing with and without node removal. Their ratios

range from 1.05 to 3.66, averaging 1.83, indicating improved fuzzing

efficiency. Compared to Table 1, the dependency-aware estima-

tor generally shows greater DP estimation accuracy improvement

when eps is lower. This aligns with the intuition that when many

discoveries remain, the difference between singleton and single-

ton cluster sizes is larger. Additionally, longer execution traces

(reflected in lower eps) suggest more dependencies, reinforcing the

mechanism’s impact.

Answer to RQ2: The node removal mechanism significantly

reduces control-flow graph size, decreasing nodes by 36-46%

(average: 43%). The mechanism also reduces compilation time

overhead by 15.2s (14%) on average, indicating that the time

saved from reducing the number of basic blocks to instrument

outweighs the cost of node removal.
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Subject |𝐶 | 𝑟𝑡=0

emp RE𝑟GoTu RE𝑟St
Assimp 5.6 3.8e-05 1090.6 53.4

File 4.4 3.1e-05 124.3 38.5

Harfbuzz 4.2 1.9e-05 3557.3 347.7

Libxml2 6.0 6.7e-06 1190.2 107.6

Figure 5: Left: Residual risk estimation for Assimp (x-axis:
time (min.), y-axis: prob.). Right: Result summary for the
bug-based evaluation. |𝐶 | is the number of unique crashes
found during the fuzzing, and 𝑟𝑡=0

emp is the initial residual risk.
The table reports the mean values across 5 repetitions.

5.3 RQ3: Bug-based Residual Risk Estimation
In this experiment, we evaluate residual risk estimation using DP

estimators. Since not all coverage elements are bugs, DP estimation

is expected to overapproximate residual risk. The left side of Figure 5

shows the empirical residual risk 𝑟emp and DP estimation forAssimp
(4d451fe). As expected, DP estimation overapproximates residual

risk, but the dependency-aware estimator provides a closer estimate

than GoTu, aligning with our study’s goal.

The right side of Figure 5 summarizes results for bug-based

residual risk estimation. The table reports the number of unique

crashes found during fuzzing (|𝐶 |), the initial residual risk 𝑟𝑡=0

emp , and

the relative error of residual risk estimation for both estimators.

The dependency-aware estimator achieves an error one to two

orders of magnitude lower than GoTu. This result indicates that the

dependency-aware estimator mitigates two layers of overestimation

in residual risk analysis, providing a more accurate estimate.

Answer to RQ3: The dependency-aware estimator mitigates

two layers of overestimation in residual risk analysis by directly

estimating the discovery probability, resulting in an error one to

two orders of magnitude lower than the Good-Turing estimator.

5.4 RQ4: Estimation over Greybox Fuzzing
Presentation. In this section, we evaluate the effectiveness of our

dependency-aware estimator in the context of greybox fuzzing,
which is subject to adaptive bias. In greybox fuzzing, generated

inputs that increase coverage are added to the seed corpus, alter-

ing the discovery probability each time a new seed is introduced.

Existing estimators for greybox fuzzing that are not dependency-

aware are the reset estimator (Reset; Eq. (8)) and the mean local

estimator (MLG; Eq. (9)). We adapt our dependency-aware estima-

tion methodology to greybox fuzzing by substituting the number of

singletons in the mean local estimator with the number of singleton

clusters (see Section 4.2), and refer to the resulting variant as the

dependency-aware mean local estimator (MLD).

Since discovery probability approaches 0 only in the limit, a

negatively biased estimator may appear to have a low absolute

error while still differing from the true value by several orders of

magnitude. To capture this discrepancy, we report the logarithmic

error (LE) in addition to the absolute error (AE) and relative error

(RE). The logarithmic error is defined as 𝐿𝐸esti = log
10
(𝑚̂esti) −

log
10
(𝑚̂emp), where 𝑚̂esti is the estimate produced by the estimator.

Results. Table 5 presents the performance of two existing esti-

mators for greybox campaigns—Reset and MLG—alongside our

dependency-aware extension of MLG, termed MLD, evaluated over

24-hour campaigns. Additional results are provided in the supple-

mentary material. We observe that MLD outperforms both existing

estimators in the greybox setting, confirming the finding of RQ1
that dependency-aware estimation improves DP estimator perfor-

mance.

Between the twoMean Local estimators,MLD consistently achieves

a lower error than the original MLG across all subjects. For four

subjects—Sqlite3, Freetype2, Libxml2, and Libjpeg —where our

dependency-aware estimator demonstrated dominant performance

over GoTu in blackbox fuzzing in terms of absolute error (
AE𝐷
AE𝐺 <

0.2), MLD also outperforms MLG in greybox fuzzing, achieving

a relative error below 0.45 in all cases. The last two columns of

Table 5, which report the statistical significance (𝑝) and effect size

(𝛿) of the difference between the absolute errors of MLD (AEMLD)

and MLG (AEMLG), statistically confirm this outperformance: the

𝑝-value is less than 10
−6

and the effect size 𝛿 is approximately 1.0.

While still outperforming GoTu, the dependency-aware estima-

tor shows less improvement in certain subjects. This includes not

only cases where the difference between singleton and singleton-

cluster sizes is small (Libpcap) but also subjects where the mean

local estimator itself is particularly inaccurate (Zlib, Jsoncpp, and
Libpng). One common cause is the frequent addition of new seeds,

which have not yet been chosen for mutation, to the corpus; their

local DP estimate remains 0.5 (Eq. (9)), which can significantly con-

tribute to DP overestimation. This suggests that the poor accuracy

of the mean local estimator itself may be the primary factor limiting

the performance of the dependency-aware approach in these cases.

The Reset estimator underestimates the empirical DP by at least

two orders of magnitude across all subjects, with an average loga-

rithmic error of -3.42 (while MLG (1.85) and MLD (1.52) exhibit a

bias of between one and two orders of magnitude). Underestimating

residual risk by so many orders of magnitude is problematic, as

it may lead a security researcher to believe that the likelihood of

discovering a vulnerability is substantially lower than it actually is.

Answer to RQ4: The dependency-aware estimator improves

upon state-of-the-art discovery probability estimation in grey-

box fuzzing. Its effectiveness is greater in subjects where the

mean local estimation approach accurately accounts for adap-

tive bias in the sampling distribution.

6 Threats to Validity
As with any empirical study, our results and conclusions face sev-

eral threats to validity. A primary concern is external validity—the
extent to which our findings generalize to other subjects and tools.

While we do not claim our findings apply to all software, we aim

to minimize this threat by selecting subjects from FuzzBench [23],

a widely recognized fuzzer benchmark. We based our selection on

well-defined criteria from prior work [4], including all software

used in previous studies while expanding the selection to cover a

broader range of sizes and characteristics. Another concern is inter-
nal validity or the degree to which our study controls systematic

error. To minimize random variation and enhance statistical power,
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Table 5: Summary of results for the greybox fuzzing evaluation. Mean values over 20 repetitions are reported. LE denotes the
estimator’s error in logarithmic scale, defined as LEesti = log

10
(𝑚̂esti) − log

10
(𝑚̂emp), where 𝑚̂esti is the estimate of the DP. AE

and RE denote absolute and relative errors, respectively. The last two columns report the statistical significance (𝑝) and effect
size (𝛿) of the difference between the absolute errors of the original Mean Local estimator (AEMLG) and the dependency-aware
estimator (AEMLD).

Subject 𝑚̂emp LEReset LEMLG LEMLD AEReset AEMLG AEMLD REReset REMLG REMLD
AEMLD
AEMLG

𝑝 𝛿

Sqlite3 9.57e-02 -2.26 1.44 0.36 9.49e-02 4.60e+00 1.34e-01 0.92 45.95 1.35 0.03 2e-6 1.00

Freetype2 3.07e-02 -2.49 1.48 0.98 3.04e-02 1.43e+00 2.87e-01 0.92 49.50 10.54 0.20 2e-6 1.00

Libxml2 1.85e-02 -2.01 1.88 1.18 1.80e-02 2.60e+00 3.17e-01 0.91 120.25 16.63 0.12 2e-6 1.00

Libjpeg 1.24e-02 -3.87 1.58 1.34 1.23e-02 3.53e-01 1.60e-01 0.93 350.16 245.86 0.45 2e-6 1.00

Zlib 3.58e-03 -3.93 2.78 2.78 3.58e-03 2.17e-01 2.17e-01 0.93 7364.87 7354.14 1.00 2e-6 1.00

Libpcap 1.95e-02 -5.29 1.10 1.06 1.95e-02 2.22e-01 1.92e-01 0.93 17.20 15.42 0.87 2e-6 1.00

Jsoncpp 1.12e-03 -3.09 2.87 2.83 1.12e-03 2.82e-01 2.18e-01 0.93 3570.90 3258.92 0.77 2e-6 1.00

Libpng 6.59e-03 -4.46 1.65 1.62 6.58e-03 2.58e-01 2.27e-01 0.93 454.99 390.82 0.88 2e-6 1.00

we ran each experiment 20 times for RQ1 and 5 times for other

RQs, reporting statistical outcomes where applicable. Finally, there

is a risk of errors in our evaluation. We have made all scripts and

data publicly available to ensure transparency and reproducibility.

7 Related Work
Residual Risk Analysis and Reliability of Software Systems. Re-

cently, methods for measuring residual risk in software testing have

been actively explored using various approaches. Most employ bio-

statistical methods [14], such as Good-Turing and Laplace [2, 4,

18, 24, 26, 29], or machine-learning techniques [27] to estimate

the probability of discovering new bugs. However, while statistical

estimators assess residual risk without analyzing program seman-

tics, they overlook dependencies between coverage elements, often

leading to inaccurate results. In contrast, our dependency-aware

discovery probability estimation leverages program dependencies,

yielding more accurate residual risk estimations.

Whitebox testing uses symbolic execution to systematically ex-

plore program paths. For residual risk assessment in whitebox

testing, model counting has been proposed to evaluate path con-

ditions in traversed paths [8, 9, 11]. However, model counting is

computationally intensive and may not scale well to large software

systems. In contrast, our dependency-aware discovery probability

estimation is lightweight and scalable for large-scale software.

Our primary focus is on the residual risk of undetected bugs

during an ongoing greybox testing campaign. These methods may

help allocate testing resources efficiently and refine testing strate-

gies [25]. Meanwhile, extensive research has examined methods

for quantifying overall software reliability [21]. However, as Filieri

et al. [8] observed, these approaches are often defined at the design

and architectural levels rather than at the program level.

Other Predictive Analyses in Software Testing. Framing software

testing as a statistical problem opens up diverse predictive analyses.

Beyond residual risk, Liyanage et al. [19] estimated reachable cov-
erage—the number of coverage elements a fuzzer can potentially

reach—using statistical methods. Another approach is extrapolat-
ing the coverage rate [2, 20], which estimates potential additional

coverage within a future time frame. Statistical analysis also ex-

tends beyond general progress predictions; for example, Lee and

Böhme [13] estimated the probability of reaching specific program

states that remain unreached. Such predictions also aid in informa-

tion leakage analysis [15], where statistical estimations quantify

information leakage in software systems.

8 Discussion
In this work, we proposed dependency-aware discovery probability

estimation to provide a better upper-bound estimate of residual risk

in software testing. Since execution samples inherently form inci-

dence data—where multiple dependent coverage elements appear

together in a single execution—the Good-Turing estimator, which

assumes independence between coverage elements, significantly

overestimates residual risk. Our dependency-aware discovery prob-

ability estimation accounts for program dependency, providing

more accurate estimates of the discovery probability. Theoretically,

our estimator is grounded in the incidence data model and guaran-

tees tighter—or at least equally tight—bounds than the Good-Turing

estimator; it achieves equality only in the hypothetical case where

coverage elements are entirely independent—a condition that vir-

tually never holds in real software. Empirical evaluations using

FuzzBench subjects show that our estimator reliably yields accu-

rate discovery probability estimates. Two orthogonal optimizations

further demonstrate the practicality of our estimator for real-world

software testing with large coverage sets and extensive execution

traces. Our online singleton cluster maintenance mechanism en-

ables efficient computation of the estimator, with the same space

complexity as the Good-Turing estimator. In the absence of de-

pendencies, our approach would incur a slightly higher memory

footprint. However, in practice, the node-removal mechanism elim-

inates approximately 43% of the nodes, which are not recorded,

thereby reducing memory overhead (see Table 4 for details).

Our dependency-aware discovery probability estimation extends

beyond residual risk analysis; it provides a framework for estimat-

ing the probability of observing new behaviors across a range of

empirical program analyses. Its key advantage is handling incidence

data, where multiple classes appear together in a sample due to



Conference’17, July 2017, Washington, DC, USA Seongmin Lee and Marcel Böhme

dependency relations. Beyond residual risk analysis, potential ap-

plications include reachability analysis: while current methods [13]

consider binary reachability of specific program states, single pro-

gram executions transition through multiple states, creating inci-

dence data. Mutation testing and automated program repair could

also benefit, as they frequently generate new program variants and

observe their behaviors. Depending on the behavior space’s seman-

tics (e.g., the RIPRmodel [1, 17] for mutation testing or precondition

violation levels in program repair), these can be multidimensional

and modeled as incidence data. We anticipate dependency-aware

discovery probability estimation extending to other sampling-based

methodologies that handle incidence data or class dependencies.

9 Data Availability
All codes and data used in the paper are available at

https://anonymous.4open.science/r/struct-disc-prob-7795.
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