Dependency-aware Residual Risk Analysis

Seongmin Lee
University of California, Los Angeles
Los Angeles, USA
seongminlee@sigsoft.org

Abstract

However much we test a software system, some residual risk of
undiscovered bugs always remains. If we model test generation as a
sampling process, the residual risk can be defined as the probability
that the next test input reveals a bug. This risk is upper-bounded
by the discovery probability (DP), i.e., the probability that the next
test input covers new code, which itself is upper-bounded by the
coverage rate, i.e., the expected number of new coverage elements
per test input. Prior work introduced the Good-Turing estimator
(GoTu) to estimate residual risk via coverage rate. However, we find
that GoTu substantially overestimates, leading to undue optimism in
bug finding because (i) the coverage rate is only a loose upper bound,
and (ii) GoTu ignores dependencies among coverage elements.

We propose dependency-aware DP estimation for residual risk
analysis. Our estimator directly estimates DP and accounts for
dependencies among coverage elements using Ma and Chao’s sam-
ple coverage estimation. A naive implementation requires space
proportional to the number of coverage elements and executions,
which can be prohibitively large. To make it practical, we intro-
duce two optimizations: dependency-aware node removal, which
reduces the number of coverage elements to observe, and online
singleton cluster maintenance, which eliminates the need to record
observed coverage elements in each execution.

A comparison of our estimator and GoTu on real-world software
from FuzzBench demonstrates a substantial reduction in estimation
error. If we stopped the campaign when the estimate of residual
risk falls below a certain threshold, GoTu would lead a tester to
waste 7X more time than our estimator before deciding to stop. Our
estimator achieves a median absolute error of only one-fifth that
of GoTu. Finally, our bug-based analysis shows that our estimator
achieves one to two orders of magnitude lower error than GoTu in
residual risk estimation.

ACM Reference Format:
Seongmin Lee and Marcel Bohme. 2025. Dependency-aware Residual Risk
Analysis. In . ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 Introduction

Software testing can never be exhaustive. Hence, there is always
some residual risk that an unseen bug will exist even after extensive
testing. Specifically, in a testing campaign where no bugs have
been found, residual risk refers to the probability that the next test
input triggers a bug. In essence, residual risk represents the risk
that persists due to the inherent incompleteness of testing [2]. If
residual risk is high, testing should continue to uncover hidden
bugs. If residual risk is low, continued testing may be inefficient,

Marcel Bohme
Max Planck Institute for Security and Privacy
Bochum, Germany
marcel.boehme@acm.org

and resources could be redirected to other tasks, such as initiating
a new fuzzing campaign with different seeds or configurations or
employing alternative testing techniques. However, it is impossible
to know the exact residual risk as the underlying distribution of
the testing process is unknown [7].

Recently, several studies have employed estimators from ecolog-
ical biostatistics to estimate an upper bound of the residual risk [2-
4]. Bshme [2] introduced the statistical framework STADS, which
models software testing as a sampling process from an unknown
Bernoulli Product distribution. In this framework, classes represent
coverage elements, such as basic blocks or paths, and each sample
corresponds to a set of these coverage elements exercised during
execution with a generated test input. Bchme demonstrated that
the residual risk is bounded from above by the discovery probability
(DP), which is the probability of encountering an unseen class in the
next sample. If samples are independent and identically distributed
(iid, e.g., in blackbox fuzzing), previous works have employed the
Good-Turing estimator (GoTu) [12] to (over-)approximate the DP.
GoTu estimates the coverage rate, i.e., the expected number of un-
seen classes in the next sample, which serves as an upper bound
on the DP. Developers can safely decide to end test if the estimated
residual risk is below a specified threshold.

Residual risk < Discovery Probability < Coverage rate

Probabilitity of new event Expected # of new event

However, the existing residual risk analysis relying on GoTu has
two inherent challenges. First, because GoTu measures the coverage
rate, it introduces two layers of overestimation—from coverage rate
to DP and from DP to residual risk—which can result in significant
overestimation. Second, GoTu assumes independence between the
classes, which does not reflect the inter-dependencies within the
software: certain coverage elements or bugs are only reachable if
other specific blocks are reached first. These limitations may lead to
overly optimistic estimates about discovering new bugs, potentially
resulting in substantial resource waste.

In this work, we propose dependency-aware DP estimation for
residual risk analysis. Our estimator directly estimates DP and
accounts for dependencies between coverage elements. Rather than
relying on explicit dependency analysis, our method leverages only
the statistical properties of sampled executions. The key insight is
that dependencies among coverage elements are naturally reflected
in their co-occurrence within samples. Our estimator builds on Ma
and Chao’s sample coverage estimation [22], which models class
dependencies through their observed co-occurrence, allowing us
to capture structural relationships without program analysis. Our
estimator is a consistent estimator! of the DP.

Conference’17, Washington, DC, USA
2025. ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

n statistics, a consistent estimator is an estimator where, as the number of data points
used increases indefinitely, the resulting sequence of estimates converges in probability
to the estimand. Check Section 3.1 for the formal definition.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

A naive implementation of dependency-aware DP estimation
requires O(n-b) space, where n is the number of executions and b is
the number of coverage elements, both of which can be prohibitively
large. To make it practical, we introduce two optimizations. The
dependency-aware node removal mechanism reduces the number of
coverage elements b to be observed in advance using the control-
flow graph of the software while preserving the accuracy of the
estimator. Online singleton cluster maintenance eliminates the need
to record the covered elements for each execution, reducing the
space complexity of the DP estimation from O(n - b) to O(b).

We evaluate our dependency-aware estimator on real-world soft-
ware testing using fuzzing on eight benchmark programs from
FuzzBench [23]. Our evaluation focuses on two key aspects: the
accuracy of DP estimation and the accuracy of stop-time decisions
based on a DP threshold. Results show that our estimator signif-
icantly outperforms GoTu in DP estimation, achieving a median
absolute error of only one-fifth that of GoTu, supported by statistical
significance tests. It also provides accurate stop-time estimates, re-
ducing bias by approximately 7x compared to GoTu, meaning only
one-seventh of the testing time is wasted relative to the state of the
art. Additionally, our node removal mechanism reduces the number
of observed coverage elements by 43%. In the estimation of resid-
ual risk (i.e., the probability of finding a bug), our estimator yields
1-2 orders of magnitude lower error than GoTu. When applied to
greybox fuzzing—where the bug-finding probability changes over
time—our estimator achieves up to an order of magnitude lower
error in DP estimation compared to GoTu.

The contributions of this paper are summarized as follows:

o We identify key challenges in existing residual risk analysis that
rely on GoTu and propose dependency-aware DP estimation to
tackle these challenges.

e We establish and evaluate the performance of our estimator.
Specifically, we empirically demonstrate that our estimator is 5x
more accurate in DP estimation with statistical significance, 7x
less testing time is wasted for stop-time decisions, and one to
two orders of magnitude more precise in residual risk estimation
than GoTu.

o To make DP estimation practical, we design two orthogonal opti-
mization methods: a node removal mechanism, which reduces
the number of coverage elements to observe while maintaining
estimation accuracy, and online singleton cluster maintenance,
which removes the need to record observed coverage elements
in each execution.

e We publish implementation, data, and analysis scripts: https:
//anonymous.4open.science/r/struct-disc-prob-7795.

2 Background: Extrapolation of Software
Testing and Residual Risk Analysis

As Dijkstra famously said, “Testing shows the presence, not the
absence, of bugs” [7]; software testing can, therefore, never be ex-
haustive. Software testing is a matter of trade-off : the more testing is
done, the more bugs are found, but at the cost of increased resource
consumption. Thus, questions like “How much can the software be
tested?” “Have we reached the limits of what testing can achieve?”
and “How quickly are we approaching those limits?” are fundamental
to the testing process. Among these questions, residual risk analysis

Seongmin Lee and Marcel Bohme

seeks to estimate the probability that the next input? will trigger a
bug that has not yet been found [2]. If residual risk is high, testing
should continue to uncover hidden bugs. Conversely, if residual risk
is low, further testing may be inefficient, and resources might be
better allocated elsewhere. Yet, determining the exact residual risk
presents a chicken-and-egg problem: to measure it precisely, we
would need to know which inputs trigger the unknown bugs—but
those bugs are, by definition, unknown, and discovering them is
the very purpose of testing.

Software Testing as a Sampling Process. While it is impossible to
know the exact residual risk, recent studies have confronted this
challenge by estimating an upper bound of the residual risk, and
the key to this is modeling software testing as a sampling process.
STADS [4], the underpinning framework of recent studies, defines
the testing target as the set of classes® § = {sit1<i<p (b =1S]) that
is the union of the set of coverage elements and bugs in the program
P. The result of the test execution X = run(P, i) C S with the input
i is the set of coverage elements covered by the execution and the
bug if triggered. Software testing is then the sampling process of
executions X" = {X1, X, ..., Xy} from the unknown distribution
Dy : 25 - [0,1],i.e., Dp(X), where X C S, is the probability of
the random input exercising exactly X. In statistics terms, software
testing is the sampling process of the incidence data, where each
sample X is the subset of the set of classes S, while if the sample is
a single class, it is the abundance data [5].

Given n sample test executions X", the residual risk r(n) is the
probability that the next sample X1 triggers a bug not yet found.
Two quantities related to the residual risk are defined: the discovery
probability (DP) m and the coverage rate U (also known as the
discovery rate in applied statistics). The DP m(n) is the probability
of the next sample X,41 belonging to any of the unseen classes
so far. The DP is the best possible upper bound on the residual risk
when no prior information exists about which classes are bugs. The
coverage rate U(n) is the expected number of unseen classes in the
next sample. By definition, the coverage rate U upper-bounds the
DP m, and the DP m upper-bounds the residual risk r. Formally, let
Sn € S be the set of classes observed in the n samples, Sp,e C S
be the set of bugs, px = Dp(X), and X be the set of all possible
samples X, i.e, X = {X|X C S, px > 0}. Then,

r(n) = > px - 1((X\ S2) N Spug # @), (1)
XeX

m(n) = > px - UX\ Sy #2), @)
XeX

Um) = > px - I1X\ Sal, 3)
XeX

where I(-) is the indicator function that returns 1 if the condition
is true and 0 otherwise. For notational simplicity, we omit the
argument ninr(n), m(n), and U (n) when it is clear from the context.
In a time-dependent context, where the number of samples at time
t is ns, we use r(t), m(t), and U(t) to denote the corresponding
quantities evaluated at n;. Note that if the samples are abundance

2Here, input is used interchangeably with test case.
3This paper uses the terms ‘class’ (regarding the context of the statistics), ‘coverage
element’ (regarding the software testing context), and ‘node’ (regarding the graph
theory for the control-flow graph) interchangeably.

https://anonymous.4open.science/r/struct-disc-prob-7795
https://anonymous.4open.science/r/struct-disc-prob-7795

Dependency-aware Residual Risk Analysis

data, i.e., each sample is a single class, then the DP m is the same
as the coverage rate U.

Similar to STADS, we initially consider the fixed sampling dis-
tribution, i.e., the samples X" from the distribution Dep are the
collection of the random variables X; that are i.i.d., during the dis-
cussion of the DP estimation (Section 3). Several studies have dealt
with the adaptive sampling distribution [4, 20], where the distribu-
tion changes as time goes on, while they all relied on the theoretical
framework of the fixed sampling distribution. Later, we empirically
investigate the performance of our estimator in the presence of an
adaptive sampling distribution in Section 5.4.

Good-Turing Estimator for Residual Risk Analysis. The Good-
Turing estimator (GoTu) [12] is primarily used in software testing
to estimate the coverage rate as the upper bound on the DP and,
consequently, the residual risk [2, 4]. Given the samples X", GoTu
estimates the coverage rate U based on the frequency of the ob-
served classes. To be more specific, let V; be the set of singleton
classes, i.e., the classes observed only once in X",

i = {Si

GoTu estimates U as Ug = |V;|/n, the ratio of the number of sin-
gleton classes to the number of executions. GoTu is known to
overestimate the coverage rate U [20] and, thus, conservatively
overestimates the DP m and the residual risk r. Applying GoTu
gives, for the first time, the non-trivial upper bound of the resid-
ual risk in the software testing, which can be used to inform the
decision-making process in the software testing.

Hereafter, we assume no bug is found within the current testing
campaign (X"), which is the typical assumption in software testing;
if the bug is found, the testing campaign will be terminated, and the
residual risk is no longer meaningful. We also refer to S as the set
of coverage elements regarding statistical estimation purposes, as
no bug has been found in X; € X", X; C S so far. Similarly, b = [S|
is the number of coverage elements in the software.

si€S, Z]I(sieX)zl}. o

Xexn

Challenges of GoTu for residual risk analysis. While they opened
the door to foresee the future of software testing and to inform the
decision-making process, the current residual risk analysis relying
on GoTu has two inherent challenges:

e Challenge 1. GoTu estimates the coverage rate U, not the DP m.
By nature, two layers of overestimation, U to m and m to r, are
inevitable when using GoTu for the residual risk analysis, which
may lead to excessive optimism about finding a new bug.

e Challenge 2. GoTu assumes independence between the classes,
which is far from the reality of software. Some coverage elements
or bugs are reachable only if another coverage element is reached.

The following example illustrates how GoTu overestimates the
DP in software testing due to the challenges. Figure 1a shows a
simplified control-flow graph of an imaginary software, where
edge probabilities indicate transition likelihoods between coverage
elements. In this software, the right subtree, with execution paths
of length 20-30, is frequently visited compared to the left subtree,
whose paths are significantly longer, around 1,000. The first and
the second columns of Figure 1d show the hypothetical number of
singleton classes |V;| as the number of executions n increases.

Conference’17, July 2017, Washington, DC, USA

o Evidence of challenge 1. Given the single execution, the number of
visited coverage elements is 23, which is the number of singletons.
Therefore, UG = 23.0. As the DP m is a probability and the
estimate is larger than 1, the estimate is not useful, at all.

Evidence of challenge 2. Assume that after 100 executions, the
left subtree was first visited. Since execution paths in the left
subtree are significantly longer due to dependencies between
coverage elements, a sharp increase in singleton classes |V;] is
observed; in our example, |V;| increases from 4 to 1021 when
n changes from 99 to 100. This causes a massive surge in the
Ug, demonstrating the unreliability of GoTu as the (upper bound
of the) DP m. Ideally, a DP should not experience a significant
change due to a single execution in the long run. This sharp
increase persists for a while, as the left subtree is rarely visited.

3 Dependency-aware Residual Risk Analysis

In this work, we propose a dependency-aware residual risk analysis
that considers the structural aspect of the software to tackle the
challenges of the current residual risk analysis.

3.1 Dependency-aware DP Estimation

To address the challenges of GoTu, we introduce dependency-aware
DP estimation. We build and later improve on Ma and Chao’s sam-
ple coverage estimation [22]. Their approach was inspired by the
structure of the ‘seven-character quartet’ in Chinese poetry, which
consists of 7 X 4 characters, where many characters frequently co-
occur to maintain rhyme; multiple singleton characters can appear
together in a single line, similar to coverage elements in software.
Ma and Chao designed an estimation method for sample coverage
¢, which is the complement of DP (¢ = 1 — m) in abundance data
while accounting for class dependencies.

The key approach of Ma and Chao’s estimation that makes it
applicable regardless of the independence between the classes is to
consider a singleton in a sample-wise manner rather than a class-
wise manner. Given the samples X" of size n, it first identifies the set
of singletons V; C S. Instead of computing the ratio of the number
of singletons |V;| to the number of samples n as GoTu does, Ma
and Chao’s estimator identifies the sub-samples Yp = {X; | X; €
X" AV1NX; # @} that contain at least one singleton and estimates
the DP as the ratio of the number of those samples to the number
of samples n. Formally, the estimator is computed as

_|Ypl S IViNX; # 2)
T on n '

mp

®)

In their work, Ma and Chao proved that the estimator consistently
estimates the DP in the abundance data with the dependencies
between the classes, i.e., when the number of samples n — oo, the

estimator converges to the DP in probability: rip 2.

Figure 1 demonstrates how the estimator solves the challenges of
GoTu for DP estimation. By definition, the number of sub-samples
|Yp| is always at most the number of samples n. Thus, Ma and
Chao’s estimator mp is always at most 1 (which is a property we
expect from a probability estimator). The set of all new coverage
elements appearing together (due to dependencies) in a single ex-
ecution is regarded as a single execution having a singleton. The
fourth column (|Yp|) of Figure 1d, therefore, shows an increase of

Conference’17, July 2017, Washington, DC, USA Seongmin Lee and Marcel Bohme

v;
|

—_ T T TTTT1 IT1 A “
entry entry " ‘ "l Ye ‘ Ypl i
0.01 \o .29 0.01 / \o.qq 1 23 230 1 1.0
10 Yb 99 4 0.04 2 0.02
len:\~1K len:\~1K n 100 | 1021 10.21 3 0.03
101 | 1021 10.11 3 0.03

len: 20-30 len: 20-30 !

_Lad BESSSSSSSEE EEE mEEEE N 189 | 1019 5.39 2 0.01
I b 190 | 1533 8.07 3 0.02

(a) Coverage over CFG after (b) Coverage over CFG after (c) Coverage record matrix (n(=190): # samples, (d) |Vi|, Us, |Yp|, and rp, given
100th execution 190th execution b: # coverage elements) X"

Figure 1: Example illustrating challenges of GoTu in DP estimation and the effect of the dependency-aware estimator. In (a), (b),
and (c), white, gray, and red indicate unvisited, visited, and singleton coverage elements, respectively. In (a) and (b), the green

arrow represents the execution path.

1 at the 100th execution, even though many new singletons are
observed in the second column (|V1]). Note that the set of single-
tons evolves as new samples are observed. Figure 1b shows the
control-flow graph of the software after the 190th execution, which
traversed the left subtree for the second time—overlapping coverage
elements are discarded from the singletons, and new ones are in-
troduced. Even though ~500 new singletons are added in the 190th
execution (the last row of Figure 1d), the number of sub-samples
|Yp| only increases by 1. The last column of Figure 1d shows Ma
and Chao’s estimator miip as the number of executions n increases.

Scalability Issue of Ma and Chao’s Estimator. Ma and Chao’s esti-
mator [22] checks singletons and the executions containing them
after all the execution samples are observed. Thus, it must track
which coverage elements are observed in each execution through-
out testing as the coverage record matrix shown in Figure 1c. Its
space complexity is O(n - b), where n is the number of executions
and b is the number of coverage elements. This complexity can be a
bottleneck for software testing, typically in industry-level software,
as b can be excessively large. Moreover, automated software testing,
such as fuzzing [10], can execute thousands of tests per second,
further exacerbating the space overhead.

3.2 Node Removal Mechanism

To mitigate the space complexity issue and make the DP estima-
tion practical, the first optimization method we suggest is the
dependency-aware node removal mechanism. This aims to reduce
the number of coverage elements b to be observed in advance while
preserving the accuracy of the DP estimation. We formally prove
which nodes can be safely removed to ensure that the optimiza-
tion preserves the overapproximation of discovery probability over
residual risk. Without this formal justification, arbitrary node re-
moval could reduce |Yp|, leading to an underestimated discovery
probability and a false sense of program safety.

Principle of Node Removal. The principle of node removal is to
identify the nodes—coverage elements in the control-flow graph-
that do not affect the dependency-aware DP estimation even if

unobserved; we call these nodes safely ignorable from S during
observation for the dependency-aware DP estimation.

Definition 3.1 (Safely Ignorable). Let S be the set of coverage
elements in program P. We call s € S as safely ignorable if, for all
samples X" ~ Dp of some size n € N, |Yp| = |Yp|, where
V1 C S is the set of all singletons in X",

Yp={X;i | X; e X" ANX; N V1 # @},

X" ={X; | Xi e X" A Xi = X; \ {s}},

Vi C S is the set of all singletons in X", and
Yp = {X|X eX"AX; ﬂVlig}

The situation where |Yp| remains unchanged even after remov-
ing s € S from the observation implies that the DP estimate mp is
the same, regardless of whether s is observed. The following theo-
rem describes the condition under which a node is safely ignorable.

THEOREM 3.2. Lets; € S be a coverage element in program P. For
any set of samples X ~ Dy, if s; appears as a singleton in some
sample Xj. € X™, and there always exists sj € S such that sj # s;, s;
is also a singleton, and s; € X, then s; is safely ignorable.

The proof of Theorem 3.2 follows naturally from the definition
of Yp in Eq. (5). I 5; is always a singleton in X} whenever s; is
a singleton in Xi, then X € Yp even after removing s; from the
observation; |Yp| is still the same, and so is the DP .

Node Removal Mechanism. Given the principle of node removal, we
can identify the safely ignorable nodes based on the dominance/post-
dominance in the control-flow graph.

Definition 3.3 (Full Dominance, Full Post-dominance). Lets; € S
be a coverage element in the control-flow graph G, = (S, E, se, sx)
of program P, with a control-flow edge set E, an entry node s, and
an exit node sx. Node s; is a full dominator of G, if it dominates all
its direct successors in G, i.e., for any s; € succ(s;), every the paths
from s, to s; passes through s;. Node s; is a full post-dominator of
G, if it is a post-dominator of all of its direct predecessors in Ge.

THEOREM 3.4. Lets; € S be a coverage element in the control-flow
graph G¢ of program P. If s; is a full dominator of G, then s; is safely
ignorable.

Dependency-aware Residual Risk Analysis

ProoOF. Let s; be a full dominator with the set of direct successors
succ(s;). Then, for any set of samples X" ~ Dop, if s; is a singleton
in some sample X; € X", one of its successors in succ(s;) is also
executed in X; for the first time, i.e., it is a singleton in X;, while all
other successors are not executed in X". Thus, s; is safely ignorable
based on Theorem 3.2. O

The same argument of Theorem 3.4 holds for the full post-
dominator. We implement the node removal mechanism based on
Theorem 3.4, where full dominators and full post-dominators are
removed from the control-flow graph. The time complexity of the
node removal mechanism depends on two steps: O(elogb) [16],
where e and b denote the number of edges and nodes in the control-
flow graph, respectively, and O(b) for node removal. Notably, dom-
inance computation can be performed independently for each func-
tion in the software, ensuring that the node removal mechanism
remains scalable for real-world software testing. The space com-
plexity of the node removal mechanism is O(e + b).

3.3 Online Singleton Cluster Maintenance

The second optimization method is the online singleton cluster main-
tenance, which reduces the space complexity of the DP estimation
from O(n - b) to O(b), dropping the need to record the observed
coverage elements in each execution. The key idea is to introduce
another concept, the singleton cluster, which is equivalent to the
execution that contains singletons, that are maintainable in O(b)
space complexity during the testing process.

Singleton Cluster. The need to maintain the observed coverage
elements in each execution arises because Ma and Chao’s estimator
checks executions with at least one singleton. Yet, which coverage
elements are singletons is unknown in advance until all samples are
observed. To address this, we introduce singleton clusters, sets of
singletons appearing together in the same sample.

Definition 3.5 (Singleton Cluster). Given the samples X" of size n
and the set of singletons V; C S, we define an equivalence relation
= over Vj such that s; = s; if two singletons s; and s; appear
together in the same sample X € X". The singleton clusters V= =
v, Vlz, e Vlk }, where k is the number of singleton clusters, are
the equivalence classes induced by =.

For instance, in Figure 1c, the set of singletons (red cells) in
the same row is a singleton cluster. We prove that the number of
singleton clusters | V7| is the same as the number of executions that
contain at least one singleton |Yp|.

THEOREM 3.6. Given the samples X™ of size n and the set of sin-
gletons Vi C S, the number of executions that contain at least one
singleton class is equal to the number of singleton clusters, i.e.,

n
Z]I(Vl nX; # @) = V7. (6)

i=1
Proor. The proof naturally follows by showing that there is a
one-to-one correspondence between executions containing at least
one singleton class and the singleton clusters. Every singleton in
the same singleton cluster appears together in the same sample X
as they can appear in precisely one sample (injective). Let X, be
the sample containing at least one singleton class s; € V1. Then, Vli ,

Conference’17, July 2017, Washington, DC, USA

Algorithm 1: Online singleton cluster maintenance

Input: X”: the stream of samples

Output: V: singleton cluster set
1S, 2 Vi@ Vi—0o
2 for X; € X" do // iterate over the stream of samples
3 B—X;NnV;; // observed class set B

4 Vi < Vi\B; // remove classes in B from Vi and V7~
5 for Vlj € Vi do
o | Lvievive

7 D« X;\Sn; // the newly observed classes D
8 if D # @ then // Add D to S,, Vi, and V7
9 | SneSaUD; Vi e—WViUD; Vi V7 U{D}

10 return V=

the singleton cluster that includes the singleton class s}, is the only
singleton cluster that appears in sample X;, as all the singletons
in the same singleton cluster appear together in the same sample
(surjective). O

Thus, the dependency-aware estimate of the DP in Eq. (5) can be
equivalently computed by |V=|/n, which is the number of singleton
clusters divided by the number of executions.

Online Maintenance of Singleton Clusters. While they are identical
(Theorem 3.6), the key advantage of singleton cluster-based esti-
mation against the execution-with-singleton approach is that the
(number of) singleton clusters can be maintained online, i.e., during
the testing process, with O(b) space complexity. This is because
the change from the singleton clusters in the previous sample to
the singleton clusters in the current sample is solely determined by
the set of coverage elements in the current sample.

Algorithm 1 presents the algorithm for computing the single-
ton clusters V= from the stream of samples X" with O(b) space
complexity. The algorithm maintains the observed class set Sy, sin-
gleton set V7, and singleton cluster set V;~. While iterating over
X", the algorithm computes the set of outdated (observed more
than once) singletons B and the set of newly observed classes D in
each sample X;. It then updates the sets Sy, V1, and VlE accordingly
by removing the outdated singletons from V; and V;~ and adding
the newly observed classes to Sy, V1, and VIE. The algorithm dis-
cards previous samples after each update, so its space complexity
depends only on the sizes of the sets Vlz, Vi, and S,, which are
bounded by O(b), as each set’s maximum size is b (the number of
classes). Given Algorithm 1, dependency-aware DP estimation can
be computed with O(b) space complexity, making it practical for
real-world software testing.

4 Experimental Design

4.1 Research Questions

We aim to evaluate the effectiveness of the dependency-aware
estimation in estimating the discovery probability (DP) for the
residual risk analysis. We also aim to evaluate the effectiveness
of the optimization methods in reducing the space complexity of

Conference’17, July 2017, Washington, DC, USA

the dependency-aware DP estimation. We use fuzzing as the pri-
mary application of the evaluation. To this end, we formulate the
following research questions:

RQ1. To what extent is the dependency-aware estimation more
accurate in estimating the DP than the dependency-ignorant esti-
mation?

The practical use of DP estimation is to obtain an upper bound on
the residual risk in SUTs. We evaluate how much the dependency-
aware estimator reduces estimation error compared to GoTu. Our
evaluation consists of both directly measuring the DP estimation
error and assessing its practical impact on the stopping decision of
the testing process. Specifically, we consider the most common use
case of DP estimation in fuzzing, where the estimation serves as
the stopping decision maker: given a DP threshold e, testing stops
when the estimated DP reaches this threshold.

RQ2. How much does the node removal mechanism reduce the
space complexity of the dependency-aware DP estimation?

We propose two orthogonal optimization methods for dependency-
aware DP estimation: online singleton cluster maintenance and
dependency-aware node removal. The second research question
evaluates how many coverage elements are safely ignorable by the
node removal mechanism. Reducing the number of coverage ele-
ments proportionally decreases the overhead of observing residual
risk. Not that online singleton cluster maintenance is directly incor-
porated into the dependency-aware estimator and is not separately
evaluated, as it is a theoretically proven optimization that reduces
the space complexity from O(n-b) to O(b), eliminating dependence
on the number of executions n. Instead, its impact is reflected in
the number of executions during fuzzing.

RQ3. How accurate is the dependency-aware estimation in pre-
dicting residual risk, i.e., the probability of uncovering unseen

bugs?

Here, we directly evaluate the DP estimates in the context of
the residual risk, i.e., the probability of finding an undiscovered
bug. Naturally, the DP would overestimate the bug-finding proba-
bility. However, we argue that accounting for dependencies in the
estimation yields a more accurate bug-finding probability estimate.

RQ4. Does the dependency-aware estimation provide a better esti-
mate than the state-of-the-art estimators for the greybox fuzzing?

So far, we have focused on blackbox fuzzing, where the test cases
are independent and identically (iid) distributed samples from a
fixed distribution. In this research question, we evaluate the effec-
tiveness of the dependency-aware estimation in greybox fuzzing,
where the distribution shifts with each coverage-increasing seed
added to the corpus. We modify the GoTu-based greybox fuzzing
DP estimator [4] by substituting the number of singleton clusters
for the number of singletons in the formula and evaluate its perfor-
mance against the original.

Seongmin Lee and Marcel Bohme

Fuzzing Campaig ‘ Estimates at n=100
_ A_ 20 ,5_- A _ 3
QOO mi-za 52 | wies oy

OOOEE
00000

H w\l L\ i N
QOO ~ |O prde s s fge3, 47235

Figure 2: Illustration of DP estimation and ground truth com-
putation. The green area represents samples up to time t used
for estimation (n; = 100), while the red area shows auxiliary
executions for empirical DP calculation.

Emp?r?cd discovery Probabihty at n=100

4.2 Metrics and Subjects

For RQ1, we first measure the accuracy of the estimators by their
absolute errors compared to the ground truth DP during the blackbox
fuzzing; at a particular time point ¢ during the fuzzing, we compute
the DP estimation using the dependency-aware estimator (7ip)
and GoTu (1 = Ug, regarding GoTu as the dependency-ignorant
DP estimator) and compare them to the ground truth DP.

Since the true DP for an arbitrary software is unknown, we use
the empirical DP as the ground truth: at the time point ¢, where
the number of executions (i.e., samples) and the set of observed
coverage elements so far are n; and S, , respectively, we compute
the empirical DP ritemyp(t) by countering the number of executions
that cover the coverage element that is not in Sy, from n; additional
auxiliary executions, {Xn,+1, Xn,+2, ..., Xon, }:

S U(Xngsi \ Sny #)

ng

)

memp(t) =

Figure 2 illustrates how the estimates and the ground truth DP are
computed. The absolute error is then computed as AE (. () =
|72 { estiy () — Mremp(t)|. For the compatible comparison, we measure
the relative absolute error as RE oot} (t) = AE {1y} () /Tiremp(t). The
evaluation over the time interval [0, T] is conducted by averaging

the error over the time points ¢: /()T{error} dt. We also perform a sta-
tistical significance test on the absolute errors using the two-sided
Wilcoxon signed-rank test [28] and rank-biserial correlation [6] to
assess the difference between the estimators.

To evaluate the stopping decision, we compare Tepp, the time
when the empirical DP first reaches iy, with T and Tp, the
times when GoTu and the dependency-aware estimator reach 1,5,
respectively. The ri,,.; candidates are chosen from 107k fork > 3;
for each subject, we select those reached at least once in all repeated
fuzzing runs. Similar to DP estimation evaluation, we measure the
absolute error of the stopping decision as AEL = |Toeti — Temp| and

esti
the relative absolute error as REeTSn. = AEeTm [Temp-

For RQ2, we compute the reduction ratio of the number of
coverage elements to be observed using the node removal mecha-
nism. The reduction ratio is computed as |Sy|/|S| (|S| = b), where
Sym C S is the reduced set of coverage elements after the node
removal mechanism. We also measure the time the node removal
mechanism takes to compute the reduced set of coverage elements.
Finally, we compare the fuzzing performance of the fuzzers with
and without the node removal mechanism in terms of the number of
executions per time. Although reducing the cost of coverage checks

Dependency-aware Residual Risk Analysis

during fuzzing was not our primary goal, the node removal mecha-
nism inherently reduces this overhead, contributing to improved
timewise efficiency in fuzzing.

For RQ3, we compare the DP estimates with the residual risk, i.e.,
the probability of finding a bug that has not yet been found. Similar
to RQ1, we use the empirical residual risk as the ground truth.
Let each unique bug ¢; € C (1 < i < m) be first discovered at the
ni-th execution. The empirical probability of finding bug ¢; is then
Pr(c;) = n;/n. The empirical residual risk 7¢myp at time point ¢ with
n; executions is given by the sum of the empirical probabilities of
finding bugs that have not yet been discovered: femp = 212, I(n; >
nt) - Pr(c;). We then compute the relative absolute error for the
residual risk estimation as Rqum} = My estiy — Fempl/Femp-

Bohme et al. [4] suggested the various DP estimators for grey-
box fuzzing, where the adaptive bias keeps changing the sampling
distribution; thus, the existing estimator, GoTu, underestimates
the DP. They adjusted GoTu to design the new estimator while
handling the adaptive bias. Yet, as dependency ignorance remains
in the estimator, we propose the dependency-aware estimator for
the greybox fuzzing. We use both estimators suggested by Bohme
et al. [4], the Reset estimator and the Mean Local estimator, as
baselines for the comparison. Leveraging the fact that the species
distribution changes only upon the addition of a new seed, the
a-reset estimator considers incidence (i.e., coverage) data only from
the point when the a-th last seed was added—effectively using a
moving window. A greybox campaign ¥ is a sequence of blackbox
campaigns, ¥ = (F1, Fy, ..., Fr), where k denotes the number of
new seeds that have been added to the initial seed corpus through-
out the campaign. Consequently, the set of samples X" generated
by Z is partitioned into k segments, (Z1, Z, . .., Zy), where each
segment Z; = (Xn,_,+1, Xn;_,+2, - - -» Xn;) (With ng = 0, n = n) con-
tains the samples generated between the addition of the (i — 1)-th
and i-th seeds (i.e., the sub-campaign F;). The reset estimator is
computed as:

UReset(") = %, ®)
where fig = [{s | s € X5, SxezI(s € X) = 1}] is the
number of singletons in the last & segments. The key of the Mean
Local estimator is to manage the coverage record per seed, estimat-
ing the DP if the seed is selected to mutate and then aggregating
the estimations to get the final DP.

1 ifn[=0
Uia(m) = > g {mim i IV[=0 ©

|[VE| .
teCn nlt otherwise.

Eq. (9) shows the Mean Local estimator based on GoTu, where C,
is the set of seeds in the corpus at the point where n executions are
done, g is the probability of selecting the seed ¢ to mutate, n; is the
number of times the seed t has been selected to mutate, and V/ is
the set of singletons when the seed ¢ is selected to mutate. In their
experiments, Bohme et al. [4] showed that the Mean Local estimator
performs best in greybox fuzzing, whereas the Reset estimator at
times underestimates the DP. Against these baselines, we design the
dependency-aware Mean Local estimator by substituting the number
of singletons |Vlt | for the number of singleton clusters |V;~| in the

Conference’17, July 2017, Washington, DC, USA

Mean Local estimator (Eq. (9)). In RQ4, we evaluate the dependency-
aware Mean Local estimator against the Reset estimator and the
Mean Local estimator based on GoTu in the greybox fuzzing, similar
to the evaluation in RQ1.

For RQ1, RQ2, and RQ4, we use benchmark subjects from
FuzzBench [23], a widely used fuzzing benchmarking framework
that provides diverse real-world benchmarks at an industrial scale.
We gather six subjects from FuzzBench previously used in a recent
residual risk analysis study [4]: Freetype2, Jsoncpp, Libpcap, Libpng,
Libxml2, and Zlib. These are security-critical programs that did not
crash within the first 10° generated test inputs, ensuring that resid-
ual risk analysis remains meaningful. The sizes of these subjects
in terms of the number of basic blocks are 1.8K, 8.8K, 10.5K, 14.4K,
46.1K, and 93.9K. As this set contains only two large programs, we
decided to add two more subjects Libjpeg and Sqlite3, which have
36.8K and 58.3K basic blocks, respectively, to increase the diversity
of our subjects in terms of size. The statistics of the size (b) of these
subjects are presented in Table 4. For the bug-based evaluation
in RQ3, we consider subjects from both FuzzBench and previous
studies [4, 30], selecting those where bugs can be found within
24 hours of blackbox fuzzing. In total, we identify four subjects,
Assimp (commit ID: 4d451fe), File (2d5f858), Harfbuzz (17863bd),
and Libxml2 (99a864a), for the bug-based evaluation.

4.3 Implementation and Setup

We modify the AFL++ [10] fuzzer to implement the blackbox fuzzing.
We disable the coverage-guidance features of AFL++ by defining
the macro IGNORE_FINDS. We also discard its deterministic stages,
which mutate inputs in a predefined order and thus violate the iid
sampling assumption. By default, we use both the node removal
mechanism and the online singleton cluster maintenance mecha-
nism (Algorithm 1).

While the expected value of our discovery probability (DP) esti-
mator (Eq. (5)), as well as that of GoTu, is strictly greater than zero
for n > 0, the corresponding random variables may still evaluate to
zero. This is because the number of singletons (|V;]) or singleton
clusters (|V7|) may become zero during fuzzing due to its stochas-
tic nature-an outcome that is not meaningful in our context. To
prevent this, we conservatively set the number of singletons (|V;])
or singleton clusters (|V7|) to 1 when they are zero, respectively,
thereby avoiding a zero DP estimate. Similarly, to avoid assigning
zero probability in empirical DP, we replace it with the minimum
non-zero empirical DP observed during the entire fuzzing campaign
whenever it evaluates to zero. As the baseline for greybox fuzzing,
we set the hyperparameter « of the Reset estimator to 1, which falls
within the recommended range from Béhme et al. [4].

We evaluate the estimation performance on a 24-hour fuzzing
campaign; to do so, we run the fuzzing for 48 hours to compute
the empirical DP and empirical residual risk. Experiments are con-
ducted in a Docker container with 64 cores of AMD EPYC 7713P @
2.0 GHz and 251 GB of memory. To avoid selection bias, we repeat
fuzzing with the same configuration 20 times per subject for the DP
estimation research question (RQ1, RQ4) and 5 times per subject
for other research questions.

Conference’17, July 2017, Washington, DC, USA

freetype2 zlib
102 o ":’”"
10-3 | 107
10*‘5‘ 10-7
0 10° 10t 102 103 10° 10t 102 103

Figure 3: DP estimation for Freetype2 and Zlib. The x-axis
(time in minutes) and y-axis are in log scale. Lines represent
averages over 20 repetitions, with shaded areas showing 95%
confidence intervals.

107!
| B sqlite3 B libxml2 B3 zlib 3 jsoncpp
1072 |F 5 freetype2 BEH libjpeg B8 libpcap E= libpng
Dark/Dashed Bar: AEp
Light/Solid Bar: AEg
Line: Memp

1073

w

< 1074

q 1073 H H
£]

«g 107 H E= i i f
Lo 8 s ¥
"W R .
10+ AREREE BER y

ARRARANE | |
1-10 10-60 60-360 360-1440
Time Interval (minutes)

Figure 4: Absolute error of DP estimation over time for
FuzzBench subjects. The x-axis (time in minutes) and y-axis
are in log scale. Bars represent the mean absolute error per
interval, with error bars showing 95% confidence intervals.

5 Results

5.1 RQ1: Discovery Probability Estimation

DP Estimation Accuracy. Figure 3 shows the discovery probability
(DP) estimation result of the dependency-aware estimator (fip,
green line) and GoTu (g, orange line), along with the empirical
DP (tiemp, blue line), the ground truth of our experiment for two
of the FuzzBench subjects: Freetype2 and Zlib.* The dependency-
aware estimator consistently provides an accurate estimation of the
DP compared to GoTu. In most cases, the area of the 95% confidence
interval of the dependency-aware estimator substantially overlaps
with the ground truth DP, i.e., what is empirically observed in the fu-
ture fuzzing process. In contrast, in most cases, GoTu overestimates
the DP compared to the ground truth DP. Such overestimation
demonstrates the challenge of using GoTu for the DP estimation we
have discussed in Section 2. Figure 4 shows the absolute error of DP
estimation over time for all the subjects. The error bars represent
the AE per time interval, with the darker dashed bars and the lighter
solid bars representing AEp and AEg, respectively. The lines show
the average empirical DP at each time interval. The figure demon-
strates that the error gap between the dependency-aware estimator
and GoTu is relatively consistent over time, except for Libpcap,
where the difference becomes significant after six hours.

“The results for the other subjects are provided in the supplementary material.

Seongmin Lee and Marcel Bohme

Table 1: DP estimation error (AE) and relative error (RE) aver-
aged over the fuzzing campaign. The table shows mean errors
across 20 repetitions per subject, with the last two columns
reporting statistical significance (p) and effect size ().

Subject ‘ Temp AEg AEp REG REp QETZ

P S
Sqlite3 1.01e-04 1.02e-03 1.69e-05 850 0.14 0.02 | 2e-06 1.00
Freetype2 | 5.38e-05 1.45e-04 9.41e-06 3.85 0.20 0.07 | 2e-06 1.00
Libxml2 2.95e-04 4.13e-04 3.11e-05 0.71 0.11 0.08 | 2e-06 1.00
Libjpeg 2.29e-06 5.56e-06 7.45e-07 2.09 046 0.13 | 2e-06 1.00
Zlib 3.61e-07 6.80e-07 1.70e-07 255 1.48 0.25 | 2e-06 1.00
Libpcap 2.76e-08 9.38e-08 3.25e-08 15.87 4.71 0.35 | 2e-04 0.99
Jsoncpp 1.91e-07 1.45e-07 1.03e-07 1.26 094 0.71 | 1e-05 0.99
Libpng 1.84e-06 1.33e-06 1.27e-06 1.62 1.10 0.95 | 4e-04 0.92

Table 2: Records from a single fuzzing run on the Freetype2
and Libpng subjects. ‘4New’ denotes the number of execu-

tions covering elements not in S,,, among {Xp,+1,- -, Xon, }-
Freetype2 Libpng

t| So, il V7| #New t| Su, VAl V7| #New

1m | 3655 183 71 68 1m | 1501 59 44 27

10m | 4273 207 55 52 || 10m | 1603 31 26 21

1h | 4545 200 57 61 1h | 1644 9 8 10

6h | 4860 254 51 47 6h | 1659 9 9 1

24h | 5234 425 59 58 24h | 1667 6 6 3

Table 1 presents the error statistics of DP estimation, averaged
over the entire fuzzing campaign, to assess estimator accuracy. The
table reports the mean error across 20 repetitions per subject. As
shown, the absolute error of GoTu often exceeds the empirical
DP, resulting in a relative absolute error greater than 1.0 in seven
out of eight subjects, reaching up to 16. In contrast, the absolute
error of the dependency-aware estimator is significantly lower: five
and seven subjects exhibit a relative absolute error below 1.0 and
2.0, respectively, resulting in a median error across subjects that
is one-fourth that of GoTu. A statistical significance test on the
absolute errors across 20 repetitions confirms that the dependency-
aware estimator significantly outperforms GoTu (p-value < 0.001,
effect size § > 0.9). For Libpcap, although the dependency-aware
estimator outperforms GoTu, both exhibit high relative absolute
error. This stems from blackbox fuzzing’s limited effectiveness,
which restricts coverage discovery. The low empirical DP makes
accurate estimation challenging for both estimators.

We further analyze when and how the dependency-aware es-
timator outperforms GoTu by examining fuzzing records. Table 2
presents records from a single fuzzing run on the Freetype2 and
Libpng subjects, reporting the number of discovered coverage ele-
ments (Sp,), singletons (|V1]), singleton clusters (|V;~[), and “#New,
which counts executions covering previously undiscovered ele-
ments. Since #New serves as the numerator in empirical discov-
ery probability computation, it provides a reference for estimator
accuracy—similar to |Vi| and [V7|, which act as numerators for
their respective estimators, all sharing the denominator n. Thus,
an estimator’s accuracy is reflected in its closeness to #New. The
Freetype2 record reveals a large gap between the number of sin-
gletons and singleton clusters, a trend seen in many subjects. This

Dependency-aware Residual Risk Analysis

Table 3: Stop time estimation, error (AE), and relative error
(RE). myp,y.s denotes the threshold for the stopping criterion.
The table shows mean values across 20 repetitions per subject.

T
Subject Myyes | Temp T¢I AEL AEL REL RED %
Sqlite3 103 | 64 3559 72 34947 079 5418 012 0.00
Sqlite3 1074 | 3285 14400 3482 111146 1969 338 006 0.02
Freetype2 103 | 98 268 107 1699 094 174 010 006
Freetype2 1074 | 926 3546 922 26207 034 283 000 0.00
Libxml2 1073 | 592 1110 573 5189 191 088 003 004
Libxml2 107% | 4444 673.0 4676 22855 2323 051 005 0.10
Libjpeg 10| 21 93 29 716 083 338 039 012
Libjpeg 1075 | 423 1607 510 11836 864 280 020 007
Libjpeg 1076 | 469.4 10645 5717 59519 10231 127 022 017
Zlib 1075 | 82 234 116 1519 336 185 041 022
Zlib 1076 | 659 1186 736 5275 775 080 012 015
Zlib 1077 | 240.5 692.9 551.2 452.42 310.77 1.88 1.29 0.69
Libpcap 10~% | 16 7807 567.2 77905 56551 474.83 34468 073
Jsonecpp 107°| 53 75 62 219 090 041 017 041
Joncpp 1076 | 211 405 346 1940 1353 092 064 070
Joncpp 1077 | 817 1896 1633 10798 8168 132 100 076
Libpng 1074 29 36 29 068 004 023 001 006
Libpng 1075 | 164 233 186 694 223 042 014 032
Libpng 1076 | 637 957 870 3193 2330 050 037 073
Libpng 107 | 29017 5651 5393 27341 24765 094 085 091

explains the significant discrepancy in discovery probability esti-
mates between the estimators and highlights the accuracy of the
dependency-aware estimator, as its estimates align closely with
#New. In contrast, Libpng shows a minor difference between the
two, leading to a smaller accuracy gain for the dependency-aware
estimator over GoTu. This is likely due to Libpng’s smaller [S],
which results in shorter execution traces that capture fewer cov-
erage dependencies. Additionally, its coverage discovery saturates
more quickly than in other subjects, further reducing the distinction
between singletons and singleton clusters.

Stop-Time Estimation Accuracy. Table 3 presents stop-time estima-
tion results for each subject and threshold m;,,s, chosen based
on empirical DP. The table reports mean values across 20 repeti-
tions per (subject, mpy,s) pair. As expected from the DP estimation
results, the dependency-aware estimator provides more accurate
stop-time estimates than GoTu. Its relative error is significantly
lower across all subjects and thresholds, except for Libpcap, where
both estimators perform similarly. Excluding Libpcap, all subjects
have a relative error below 0.9 for the dependency-aware estimator,
with a median REIT) of 0.17, meaning fuzzing stops less than 17%
later than necessary (mean: 0.32). In contrast, for over half of the
(subject, mypyes) pairs, GoTu’s relative error exceeds 1.0, reaching
up to 54 (median: 1.27, mean: 4.22), leading to significant resource
waste. Notably, for (Sqlite3, 10_4), GoTu never reached the thresh-
old within the 24-hour fuzzing campaign in any of the 20 repetitions.
The dependency-aware estimator achieves an absolute error 7x
lower than GoTu, demonstrating its superior performance in stop-
time estimation.

Conference’17, July 2017, Washington, DC, USA

Table 4: The impact of the node removal mechanism.

Subject ISI - 15ml B Ton. | weps) pieps,) p(%)
Sqlite3 58,253 32,849 0.56 | -82.6s (-29%) | 21.93 31.43 1.43
Freetype2 | 46,051 26,553 0.58 | -7.65(-9%) | 51.06 104.05 2.04
Libxml2 | 93,858 50,573 0.54 | -5.7s(-11%) | 18.82 50.17 2.67
Libjpeg | 36,840 21,788 0.59 | -9.9s(-18%) | 290.40 1061.58 3.66
Zlib 1,775 986 056 | -0.6s (-13%) | 7043.66 7683.91 1.09
Libpcap | 14,355 7,815 0.54 | -8.9s(-15%) | 541595 5664.24 1.05
Jsoncpp 8780 5631 0.64 | -3.55(-9%) | 2686.26 3370.08 1.25
Libpng 10463 6,077 058 | -2.7s(-10%) | 221039 3140.78 1.42
Avg. 0.57 | -15.25 (-14%) 1.83

Answer to RQ1: Our dependency-aware estimator significantly
outperforms the Good-Turing estimator in discovery probability
estimation. Five and seven subjects show a relative absolute
error below 1.0 and 2.0, respectively, with a median error one-
fifth that of the Good-Turing estimator. It also provides accurate
stop time estimates, with an absolute error 7x lower than that
of the Good-Turing estimator.

5.2 RQ2: Effect of Node Removal Mechanism

Table 4 presents the results of the node removal mechanism, report-
ing the number of nodes in the original (|S|) and reduced control-
flow graphs (|Sym|) along with the proportion of nodes remaining
after removal. Results show a significant reduction in control-flow
graph size, decreasing node count by 36-46% (average: 43%).

Notably, node removal also reduces compilation time overhead.
T, . represents this overhead, computed as the difference in compi-
lation time with node removal minus that without it, measured in
seconds (s) and percentage (%). The results show an average reduc-
tion of 15.2s (14%), a consistent trend across subjects with negligible
correlation to subject size. This negative overhead suggests that the
time saved from reducing the number of basic blocks to instrument
outweighs the cost of node removal.

p(eps) and p(eps,,,) denote the average executions per second
(eps) during fuzzing with and without node removal. Their ratios
range from 1.05 to 3.66, averaging 1.83, indicating improved fuzzing
efficiency. Compared to Table 1, the dependency-aware estima-
tor generally shows greater DP estimation accuracy improvement
when eps is lower. This aligns with the intuition that when many
discoveries remain, the difference between singleton and single-
ton cluster sizes is larger. Additionally, longer execution traces
(reflected in lower eps) suggest more dependencies, reinforcing the
mechanism’s impact.

Answer to RQ2: The node removal mechanism significantly
reduces control-flow graph size, decreasing nodes by 36-46%
(average: 43%). The mechanism also reduces compilation time
overhead by 15.2s (14%) on average, indicating that the time
saved from reducing the number of basic blocks to instrument
outweighs the cost of node removal.

Conference’17, July 2017, Washington, DC, USA

bug-assimp

10° —
Subject | |C] p=0 RE

r T
emp GoTu RESt
Assimp 5.6 3.8e-05 1090.6 53.4

1072

107* \ File 44 3.1e-05 1243 385

10-6 \ Harfbuzz | 4.2 1.9e-05 3557.3 347.7
— Femp — e — mMp

Libxml2 | 6.0 6.7e-06 1190.2 107.6
10° 107 102 103

Figure 5: Left: Residual risk estimation for Assimp (x-axis:
time (min.), y-axis: prob.). Right: Result summary for the
bug-based evaluation. |C| is the number of unique crashes
found during the fuzzing, and fg,:n% is the initial residual risk.
The table reports the mean values across 5 repetitions.

5.3 RQ3: Bug-based Residual Risk Estimation

In this experiment, we evaluate residual risk estimation using DP
estimators. Since not all coverage elements are bugs, DP estimation
is expected to overapproximate residual risk. The left side of Figure 5
shows the empirical residual risk 7¢mp and DP estimation for Assimp
(4d451fe). As expected, DP estimation overapproximates residual
risk, but the dependency-aware estimator provides a closer estimate
than GoTu, aligning with our study’s goal.

The right side of Figure 5 summarizes results for bug-based
residual risk estimation. The table reports the number of unique
crashes found during fuzzing (|C|), the initial residual risk fg,:n%, and
the relative error of residual risk estimation for both estimators.
The dependency-aware estimator achieves an error one to two
orders of magnitude lower than GoTu. This result indicates that the
dependency-aware estimator mitigates two layers of overestimation
in residual risk analysis, providing a more accurate estimate.

Answer to RQ3: The dependency-aware estimator mitigates
two layers of overestimation in residual risk analysis by directly
estimating the discovery probability, resulting in an error one to
two orders of magnitude lower than the Good-Turing estimator.

5.4 ROQ4: Estimation over Greybox Fuzzing

Presentation. In this section, we evaluate the effectiveness of our
dependency-aware estimator in the context of greybox fuzzing,
which is subject to adaptive bias. In greybox fuzzing, generated
inputs that increase coverage are added to the seed corpus, alter-
ing the discovery probability each time a new seed is introduced.
Existing estimators for greybox fuzzing that are not dependency-
aware are the reset estimator (Reset; Eq. (8)) and the mean local
estimator (MLG; Eq. (9)). We adapt our dependency-aware estima-
tion methodology to greybox fuzzing by substituting the number of
singletons in the mean local estimator with the number of singleton
clusters (see Section 4.2), and refer to the resulting variant as the
dependency-aware mean local estimator (MLD).

Since discovery probability approaches 0 only in the limit, a
negatively biased estimator may appear to have a low absolute
error while still differing from the true value by several orders of
magnitude. To capture this discrepancy, we report the logarithmic
error (LE) in addition to the absolute error (AE) and relative error
(RE). The logarithmic error is defined as LE¢g; = logyy(resti) —
log o (Memp), Where ritesy; is the estimate produced by the estimator.

Seongmin Lee and Marcel Bohme

Results. Table 5 presents the performance of two existing esti-
mators for greybox campaigns—Reset and MLG—alongside our
dependency-aware extension of MLG, termed MLD, evaluated over
24-hour campaigns. Additional results are provided in the supple-
mentary material. We observe that MLD outperforms both existing
estimators in the greybox setting, confirming the finding of RQ1
that dependency-aware estimation improves DP estimator perfor-
mance.

Between the two Mean Local estimators, MLD consistently achieves
a lower error than the original MLG across all subjects. For four
subjects—Sqlite3, Freetype2, Libxml2, and Libjpeg —where our
dependency-aware estimator demonstrated dominant performance
over GoTu in blackbox fuzzing in terms of absolute error (% <
0.2), MLD also outperforms MLG in greybox fuzzing, achieving
a relative error below 0.45 in all cases. The last two columns of
Table 5, which report the statistical significance (p) and effect size
(8) of the difference between the absolute errors of MLD (AEpp)
and MLG (AEpg), statistically confirm this outperformance: the
p-value is less than 10~¢ and the effect size & is approximately 1.0.

While still outperforming GoTu, the dependency-aware estima-
tor shows less improvement in certain subjects. This includes not
only cases where the difference between singleton and singleton-
cluster sizes is small (Libpcap) but also subjects where the mean
local estimator itself is particularly inaccurate (Zlib, Jsoncpp, and
Libpng). One common cause is the frequent addition of new seeds,
which have not yet been chosen for mutation, to the corpus; their
local DP estimate remains 0.5 (Eq. (9)), which can significantly con-
tribute to DP overestimation. This suggests that the poor accuracy
of the mean local estimator itself may be the primary factor limiting
the performance of the dependency-aware approach in these cases.

The Reset estimator underestimates the empirical DP by at least
two orders of magnitude across all subjects, with an average loga-
rithmic error of -3.42 (while MLG (1.85) and MLD (1.52) exhibit a
bias of between one and two orders of magnitude). Underestimating
residual risk by so many orders of magnitude is problematic, as
it may lead a security researcher to believe that the likelihood of
discovering a vulnerability is substantially lower than it actually is.

Answer to RQ4: The dependency-aware estimator improves
upon state-of-the-art discovery probability estimation in grey-
box fuzzing. Its effectiveness is greater in subjects where the
mean local estimation approach accurately accounts for adap-
tive bias in the sampling distribution.

6 Threats to Validity

As with any empirical study, our results and conclusions face sev-
eral threats to validity. A primary concern is external validity—the
extent to which our findings generalize to other subjects and tools.
While we do not claim our findings apply to all software, we aim
to minimize this threat by selecting subjects from FuzzBench [23],
a widely recognized fuzzer benchmark. We based our selection on
well-defined criteria from prior work [4], including all software
used in previous studies while expanding the selection to cover a
broader range of sizes and characteristics. Another concern is inter-
nal validity or the degree to which our study controls systematic
error. To minimize random variation and enhance statistical power,

Dependency-aware Residual Risk Analysis

Conference’17, July 2017, Washington, DC, USA

Table 5: Summary of results for the greybox fuzzing evaluation. Mean values over 20 repetitions are reported. LE denotes the
estimator’s error in logarithmic scale, defined as LEes; = log;o(1esti) — log o (fiemp), where riieg; is the estimate of the DP. AE
and RE denote absolute and relative errors, respectively. The last two columns report the statistical significance (p) and effect
size () of the difference between the absolute errors of the original Mean Local estimator (AE);) and the dependency-aware

estimator (AEyg p).

AEpmip

Subject | ritemp | LEReset LEmic LEmip | AEReset AEmic AEwip | REmeser REmpc REvip | B2 | p 6
Sqlite3 9.57e-02 -2.26 1.44 0.36 | 9.49e-02 4.60e+00 1.34e-01 0.92 45.95 1.35 0.03 | 2e-6 1.00
Freetype2 | 3.07e-02 -2.49 1.48 0.98 | 3.04e-02 1.43e+00 2.87e-01 0.92 49.50 10.54 0.20 | 2e-6 1.00
Libxml2 1.85e-02 -2.01 1.88 1.18 | 1.80e-02 2.60e+00 3.17e-01 0.91 120.25 16.63 0.12 | 2e-6 1.00
Libjpeg 1.24e-02 -3.87 1.58 1.34 | 1.23e-02 3.53e-01 1.60e-01 0.93 350.16 245.86 0.45 | 2e-6 1.00
Zlib 3.58e-03 -3.93 2.78 2.78 | 3.58e-03 2.17e-01 2.17e-01 0.93 736487 7354.14 1.00 | 2e-6 1.00
Libpcap 1.95e-02 -5.29 1.10 1.06 | 1.95e-02 2.22e-01 1.92e-01 0.93 17.20 15.42 0.87 | 2e-6 1.00
Jsoncpp 1.12e-03 -3.09 2.87 2.83 | 1.12e-03 2.82e-01 2.18e-01 0.93 3570.90 3258.92 0.77 | 2e-6 1.00
Libpng 6.59¢-03 -4.46 1.65 1.62 | 6.58e-03 2.58e-01 2.27e-01 093 45499 390.82 0.88 | 2e-6 1.00

we ran each experiment 20 times for RQ1 and 5 times for other
RQs, reporting statistical outcomes where applicable. Finally, there
is a risk of errors in our evaluation. We have made all scripts and
data publicly available to ensure transparency and reproducibility.

7 Related Work

Residual Risk Analysis and Reliability of Software Systems. Re-
cently, methods for measuring residual risk in software testing have
been actively explored using various approaches. Most employ bio-
statistical methods [14], such as Good-Turing and Laplace [2, 4,
18, 24, 26, 29], or machine-learning techniques [27] to estimate
the probability of discovering new bugs. However, while statistical
estimators assess residual risk without analyzing program seman-
tics, they overlook dependencies between coverage elements, often
leading to inaccurate results. In contrast, our dependency-aware
discovery probability estimation leverages program dependencies,
yielding more accurate residual risk estimations.

Whitebox testing uses symbolic execution to systematically ex-
plore program paths. For residual risk assessment in whitebox
testing, model counting has been proposed to evaluate path con-
ditions in traversed paths [8, 9, 11]. However, model counting is
computationally intensive and may not scale well to large software
systems. In contrast, our dependency-aware discovery probability
estimation is lightweight and scalable for large-scale software.

Our primary focus is on the residual risk of undetected bugs
during an ongoing greybox testing campaign. These methods may
help allocate testing resources efficiently and refine testing strate-
gies [25]. Meanwhile, extensive research has examined methods
for quantifying overall software reliability [21]. However, as Filieri
et al. [8] observed, these approaches are often defined at the design
and architectural levels rather than at the program level.

Other Predictive Analyses in Software Testing. Framing software
testing as a statistical problem opens up diverse predictive analyses.
Beyond residual risk, Liyanage et al. [19] estimated reachable cov-
erage—the number of coverage elements a fuzzer can potentially
reach—using statistical methods. Another approach is extrapolat-
ing the coverage rate [2, 20], which estimates potential additional

coverage within a future time frame. Statistical analysis also ex-
tends beyond general progress predictions; for example, Lee and
Bohme [13] estimated the probability of reaching specific program
states that remain unreached. Such predictions also aid in informa-
tion leakage analysis [15], where statistical estimations quantify
information leakage in software systems.

8 Discussion

In this work, we proposed dependency-aware discovery probability
estimation to provide a better upper-bound estimate of residual risk
in software testing. Since execution samples inherently form inci-
dence data—where multiple dependent coverage elements appear
together in a single execution—the Good-Turing estimator, which
assumes independence between coverage elements, significantly
overestimates residual risk. Our dependency-aware discovery prob-
ability estimation accounts for program dependency, providing
more accurate estimates of the discovery probability. Theoretically,
our estimator is grounded in the incidence data model and guaran-
tees tighter—or at least equally tight—bounds than the Good-Turing
estimator; it achieves equality only in the hypothetical case where
coverage elements are entirely independent—a condition that vir-
tually never holds in real software. Empirical evaluations using
FuzzBench subjects show that our estimator reliably yields accu-
rate discovery probability estimates. Two orthogonal optimizations
further demonstrate the practicality of our estimator for real-world
software testing with large coverage sets and extensive execution
traces. Our online singleton cluster maintenance mechanism en-
ables efficient computation of the estimator, with the same space
complexity as the Good-Turing estimator. In the absence of de-
pendencies, our approach would incur a slightly higher memory
footprint. However, in practice, the node-removal mechanism elim-
inates approximately 43% of the nodes, which are not recorded,
thereby reducing memory overhead (see Table 4 for details).

Our dependency-aware discovery probability estimation extends
beyond residual risk analysis; it provides a framework for estimat-
ing the probability of observing new behaviors across a range of
empirical program analyses. Its key advantage is handling incidence
data, where multiple classes appear together in a sample due to

Conference’17, July 2017, Washington, DC, USA

dependency relations. Beyond residual risk analysis, potential ap-
plications include reachability analysis: while current methods [13]
consider binary reachability of specific program states, single pro-
gram executions transition through multiple states, creating inci-
dence data. Mutation testing and automated program repair could
also benefit, as they frequently generate new program variants and
observe their behaviors. Depending on the behavior space’s seman-
tics (e.g., the RIPR model [1, 17] for mutation testing or precondition
violation levels in program repair), these can be multidimensional
and modeled as incidence data. We anticipate dependency-aware
discovery probability estimation extending to other sampling-based
methodologies that handle incidence data or class dependencies.

9 Data Availability
All codes and data used in the paper are available at

https://anonymous.4open.science/r/struct-disc-prob-7795.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback
and for helping us improve this paper. This research is funded by
the European Union. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of
the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority
can be held responsible for them. This work is supported by ERC
grant (Project AT_SCALE, 101179366).

References

[1] P. Ammann and J. Offutt. 2016. Introduction to Software Testing. Cambridge
University Press.
Marcel Bohme. 2018. STADS: Software Testing as Species Discovery. ACM Trans.
Softw. Eng. Methodol. 27, 2 (June 2018), 7:1-7:52. https://doi.org/10.1145/3210309
[3] Marcel Bohme. 2022. Statistical Reasoning about Programs. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER ’22). Association for Computing Machinery, New
York, NY, USA, 76-80. https://doi.org/10.1145/3510455.3512796
[4] Marcel Bohme, Danushka Liyanage, and Valentin Wiistholz. 2021. Estimating
Residual Risk in Greybox Fuzzing. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 230-241. https://doi.org/10.1145/3468264.3468570

[5] Anne Chao and Robert K Colwell. 2017. Thirty Years of Progeny from Chao’s
Inequality: Estimating and Comparing Richness with Incidence Data and In-
complete Sampling. SORT-Statistics and Operations Research Transactions (2017),
3-54.

[6] Edward E. Cureton. 1956. Rank-Biserial Correlation. Psychometrika 21, 3 (Sept.
1956), 287-290. https://doi.org/10.1007/BF02289138

[7] Edsger W. Dijkstra. 1972. Chapter I: Notes on Structured Programming. In
Structured Programming. Academic Press Ltd., GBR, 1-82.

[8] Antonio Filieri, Corina S. Pdsareanu, and Willem Visser. 2013. Reliability Anal-

ysis in Symbolic PathFinder. In 2013 35th International Conference on Software

Engineering (ICSE). 622-631. https://doi.org/10.1109/ICSE.2013.6606608

Antonio Filieri, Corina S. Pasireanu, Willem Visser, and Jaco Geldenhuys. 2014.

Statistical Symbolic Execution with Informed Sampling. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE 2014). Association for Computing Machinery, New York, NY, USA, 437-448.

https://doi.org/10.1145/2635868.2635899

[10] Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th {USENLX} Workshop
on Offensive Technologies ({(WOOT} 20).

[11] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic Sym-
bolic Execution. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA 2012). Association for Computing Machinery, New
York, NY, USA, 166-176. https://doi.org/10.1145/2338965.2336773

[12] I.J. Good. 1953. The Population Frequencies of Species and the Estimation of
Population Parameters. Biometrika 40, 3/4 (1953), 237-264. jstor:2333344

2

=
X0

(13

[14

[15

=
&

(17

(18

[19

)
=

[21

[22]

[23

S
=)

[25

[26

[27

[28

[29

(30]

Seongmin Lee and Marcel Bohme

Seongmin Lee and Marcel Bshme. 2023. Statistical Reachability Analysis. In
Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE’23) (ESEC/FSE
2023). Association for Computing Machinery, New York, NY, USA, 326-337.
https://doi.org/10.1145/3611643.3616268

Seongmin Lee and Marcel Bshme. 2025. How Much Is Unseen Depends Chiefly
on Information About the Seen. In Proceedings of the 13th International Conference
on Learning Representations (ICLR’25).

Seongmin Lee, Shreyas Minocha, and Marcel Bohme. 2025. Accounting for
Missing Events in Statistical Information Leakage Analysis. In Proceedings of
the IEEE/ACM 47th International Conference on Software Engineering (ICSE’25).
Association for Computing Machinery.

Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979),
121-141. https://doi.org/10.1145/357062.357071

Nan Li and Jeff Offutt. 2017. Test Oracle Strategies for Model-Based Testing. [EEE
Transactions on Software Engineering 43, 4 (2017), 372-395. https://doi.org/10.
1109/TSE.2016.2597136

B. Littlewood and D. Wright. 1997. Some Conservative Stopping Rules for the
Operational Testing of Safety Critical Software. IEEE Transactions on Software
Engineering 23, 11 (Nov. 1997), 673-683. https://doi.org/10.1109/32.637384
Danushka Liyanage, Marcel Béhme, Chakkrit Tantithamthavorn, and Stephan
Lipp. 2023. Reachable Coverage: Estimating Saturation in Fuzzing. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). 371—
383. https://doi.org/10.1109/ICSE48619.2023.00042

Danushka Liyanage, Seongmin Lee, Chakkrit Tantithamthavorn, and Marcel
Béhme. 2024. Extrapolating Coverage Rate in Greybox Fuzzing. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (ICSE’24)
(ICSE ’24). Association for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/3597503.3639198

Michael R Lyu et al. 1996. Handbook of Software Reliability Engineering. Vol. 222.
IEEE computer society press Los Alamitos.

M.-C. Ma and Anne Chao. 1993. Generalized Sample Coverage with an Applica-
tion to Chinese Poems. Statistica Sinica 3, 1 (1993), 19-34. jstor:24304935
Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and Service.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 1393-1403.
https://doi.org/10.1145/3468264.3473932

Keith W. Miller, Larry J. Morell, Robert E. Noonan, Stephen K. Park, David M.
Nicol, Branson W. Murrill, and M Voas. 1992. Estimating the Probability of Failure
When Testing Reveals No Failures. IEEE transactions on Software Engineering 18,
1(1992), 33.

Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten
Holz. 2025. Novelty Not Found: Exploring Input Shadowing in Fuzzing through
Adaptive Fuzzer Restarts. ACM Trans. Softw. Eng. Methodol. (Jan. 2025). https:
//doi.org/10.1145/3712186

Mariélle Stoelinga and Mark Timmer. 2009. Interpreting a Successful Testing
Process: Risk and Actual Coverage. In 2009 Third IEEE International Symposium
on Theoretical Aspects of Software Engineering. 251-258. https://doi.org/10.1109/
TASE.2009.26

Neil Walkinshaw, Michael Foster, José Miguel Rojas, and Robert M. Hierons. 2024.
Bounding Random Test Set Size with Computational Learning Theory. Proc. ACM
Softw. Eng. 1, FSE (July 2024), 112:2538-112:2560. https://doi.org/10.1145/3660819
Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80-83. https://doi.org/10.2307/3001968 jstor:3001968
Xingyu Zhao, Bev Littlewood, Andrey Povyakalo, and David Wright. 2015. Con-
servative Claims about the Probability of Perfection of Software-Based Systems.
In 2015 IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE). 130-140. https://doi.org/10.1109/ISSRE.2015.7381807

Xiaogang Zhu and Marcel Béhme. 2021. Regression Greybox Fuzzing. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21). Association for Computing Machinery, New York, NY, USA,
2169-2182. https://doi.org/10.1145/3460120.3484596

https://anonymous.4open.science/r/struct-disc-prob-7795
https://doi.org/10.1145/3210309
https://doi.org/10.1145/3510455.3512796
https://doi.org/10.1145/3468264.3468570
https://doi.org/10.1007/BF02289138
https://doi.org/10.1109/ICSE.2013.6606608
https://doi.org/10.1145/2635868.2635899
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1145/3611643.3616268
https://doi.org/10.1145/357062.357071
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1109/32.637384
https://doi.org/10.1109/ICSE48619.2023.00042
https://doi.org/10.1145/3597503.3639198
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3712186
https://doi.org/10.1145/3712186
https://doi.org/10.1109/TASE.2009.26
https://doi.org/10.1109/TASE.2009.26
https://doi.org/10.1145/3660819
https://doi.org/10.2307/3001968
https://doi.org/10.1109/ISSRE.2015.7381807
https://doi.org/10.1145/3460120.3484596

	Abstract
	1 Introduction
	2 Background: Extrapolation of Software Testing and Residual Risk Analysis
	3 Dependency-aware Residual Risk Analysis
	3.1 Dependency-aware DP Estimation
	3.2 Node Removal Mechanism
	3.3 Online Singleton Cluster Maintenance

	4 Experimental Design
	4.1 Research Questions
	4.2 Metrics and Subjects
	4.3 Implementation and Setup

	5 Results
	5.1 RQ1: Discovery Probability Estimation
	5.2 RQ2: Effect of Node Removal Mechanism
	5.3 RQ3: Bug-based Residual Risk Estimation
	5.4 RQ4: Estimation over Greybox Fuzzing

	6 Threats to Validity
	7 Related Work
	8 Discussion
	9 Data Availability
	Acknowledgments
	References

