
Detecting Overfi�ing of Machine Learning Techniques for
Automatic Vulnerability Detection

Niklas Risse
niklas.risse@mpi-sp.org

Max-Planck-Institute for Security and Privacy

Bochum, Germany

ABSTRACT

Recent results of machine learning for automatic vulnerability de-

tection have been very promising indeed: Given only the source

code of a function 5 , models trained bymachine learning techniques

can decide if 5 contains a security �aw with up to 70% accuracy.

But how do we know that these results are general and not spe-

ci�c to the datasets? To study this question, researchers proposed

to amplify the testing set by injecting semantic preserving changes

and found that the model’s accuracy signi�cantly drops. In other

words, the model uses some unrelated features during classi�ca-

tion. In order to increase the robustness of the model, researchers

proposed to train on ampli�ed training data, and indeed model

accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and

provide an actionable model benchmarking methodology to help

researchers better evaluate advances in machine learning for vul-

nerability detection. Speci�cally, we propose a cross validation

algorithm, where a semantic preserving transformation is applied

during the ampli�cation of either the training set or the testing

set. Using 11 transformations and 3 ML techniques, we �nd that

the improved robustness only applies to the speci�c transforma-

tions used during training data ampli�cation. In other words, the

robusti�ed models still rely on unrelated features for predicting the

vulnerabilities in the testing data.

CCS CONCEPTS

• Computing methodologies → Neural networks; • Software

and its engineering→ Software testing and debugging.

KEYWORDS

machine learning, automatic vulnerability detection, semantic pre-

serving transformations, large language models

ACM Reference Format:

Niklas Risse. 2023. Detecting Over�tting of Machine Learning Techniques

for Automatic Vulnerability Detection. In Proceedings of the 31st ACM Joint

European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Francisco, CA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3611643.3617845

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3617845

1 INTRODUCTION

Recently a number of di�erent publications have reported high

scores on vulnerability detection benchmarks using machine learn-

ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem

of detecting security vulnerabilities in software is solved? How do

we know that the reported results are general and not speci�c to

the benchmark datasets?

To study these questions, researchers have tried to explore the

capabilities and limits of machine learning techniques in ways that

go beyond simple evaluations on benchmark testing sets. For exam-

ple, it is possible to apply small semantic preserving ampli�cations

to the input programs of a state-of-the-art model and then mea-

sure, whether the model changes its predictions and whether it still

performs well. Examples for such ampli�cations are identi�er re-

naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]

or replacement of code elements with equivalent elements [3, 10].

The impact of applying semantic preserving ampli�cations to test-

ing data has been explored for many di�erent tasks in software

engineering, and the results seems to be clear: Machine learning

techniques lack robustness against semantic preserving ampli�ca-

tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-

ing data ampli�cation; applying the same or similar ampli�cations

to the training dataset. Many of the works that reported the lack

of robustness of ML models when trained on unampli�ed data

also investigated training data ampli�cation using their respective

methods [4, 9, 11, 16–20]. They found a restoration or at least im-

provement towards the initial high performance. But does training

data ampli�cation actually improve the ability of these models to

detect vulnerabilities, or are they just over�tting to a di�erent set

of data?

We contribute to answering this question by proposing a gen-

eral benchmarking methodology that can be used to evaluate the

capabilities of machine learning models for vulnerability detection

by using data ampli�cation. The core of the methodology is a cross

validation, in which a selected semantic preserving ampli�cation

method is applied to the training dataset of a model, and a di�erent

ampli�cation method is applied to the testing dataset (see Figure 1).

When repeated for all possible pairs out of a set of ampli�cation

methods, the resulting scores provide a measure of over�tting to

the speci�c semantic preserving ampli�cation methods that were

used during training data ampli�cation.

In addition to the general methodology, we present the results of

an empirical study, in which we apply the proposed methodology

to three state-of-the-art ML techniques for vulnerability detection.

We implemented 11 di�erent semantic preserving ampli�cation

methods and tried to cover types of ampli�cations commonly used

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

2189

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0666-5025
https://doi.org/10.1145/3611643.3617845
https://doi.org/10.1145/3611643.3617845
https://doi.org/10.1145/3611643.3617845
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3617845&domain=pdf&date_stamp=2023-11-30


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Niklas Risse

:) Testing DataTraining Data

ML Technique
High

accuracy
TRAIN EVAL

:) Amplified
Testing DataTraining Data

ML Technique
Low

accuracy
TRAIN EVAL

:) Amplified
Testing Data

Amplified
Training Data

ML Technique
High

accuracy
TRAIN EVAL

:) Amplified
Testing Data

Amplified
Training Data

ML Technique ?TRAIN EVAL

Figure 1: Our proposed methodology to detect over�tting

of machine learning techniques for vulnerability detection.

Di�erent ampli�cation methods are represented by di�erent

colors.

in the literature [9, 10, 13, 16–20]. Table 1 lists all ampli�cation

methods, categorizes them by type and provides short descriptions

for each of them.

In order to evaluate ML techniques which represent the state-of-

the-art of machine learning for vulnerability detection, we chose

the Top-3 techniques from the CodeXGLUE leaderboard [12] for

which the authors provide open-source implementations. Based on

the described criteria, we selected CoTexT [14], VulBERTa [8] and

PLBart [2] for our experiments.

As our main data source we use the Devign dataset [21] from the

CodeXGLUE benchmark, which contains 26.4k C functions (45.6%

contain security vulnerabilities) from the two popular open source

repositories Qemu1 and FFmpeg2. Most of the vulnerabilities in the

dataset are memory-related, e.g. memory leaks, bu�er over�ows,

memory corruption or crashes.

Figure 2 shows the result of evaluating the three selected tech-

niques using our proposed methodology. As expected, we �nd a

strong bene�t of training data ampli�cation (59.8% average restora-

tion of accuracy) when the ampli�cation methods applied to train-

ing and testing dataset are the same. However, we �nd no improve-

ment in performance when the ampli�cation methods applied to

training and testing dataset are di�erent. In fact, we even �nd

an additional 35.7% average decrease in accuracy. In other words,

state-of-the-art ML techniques severely over�t to the speci�c label-

unrelated features introduced by training data ampli�cation. The

1Qemu: https://github.com/qemu/qemu
2FFmpeg: https://github.com/FFmpeg/FFmpeg

Table 1: The semantic preserving ampli�cation methods that

we implemented for our experiments.

Identi�er Type Description

01 Identi�er Renaming Rename all function parameters to a ran-
dom token.

02 Statement Reordering Reorder all function parameters.
03 Identi�er Renaming Rename the function.
04 Statement Insertion Insert unexecuted code.
05 Statement Insertion Insert comment.
06 Statement Reordering Move the code of the function into a sepa-

rate function.
07 Statement Insertion Insert white space.
08 Statement Insertion De�ne additional void function and call it

from the function.
09 Statement Removal Remove all comments.
010 Statement Insertion Add code from training set as comment.
011 All Random selection of 01 to 010 .

CoTexT VulBERTa PLBart

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

te
st

se
t
ac
cu
ra
cy

acc[f, Tr, Tek] ∀ ak ∈ A

acc[f, Trk, T ek] ∀ ak ∈ A

acc[f, Trk, T ej] ∀ ak ∈ A ∀ aj 6=k ∈ A

Figure 2: Testing dataset performance of the three ML tech-

niques when only testing data is ampli�ed (green boxplots),

when training- and testing data is ampli�ed using the same

ampli�cation method (purple boxplots), and when training-

and testing data is ampli�ed using di�erent ampli�cation

methods (yellow boxplots). Each boxplot represents the dis-

tribution of the testing dataset accuracies over the 11 ampli-

�cation methods.

improved robustness only applies to the speci�c type of ampli�ca-

tion method used during training.

In summary, this paper makes the following contributions:

★ We present a general methodology that can be used to evaluate

ML models for vulnerability detection using data ampli�cation.

★ We show empirically, that the robustness gained by data ampli�-

cation only applies to the speci�c ampli�cation methods used

during training, and that robusti�ed models over�t to the unre-

lated features introduced by semantic preserving ampli�cation

methods.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence Strategy - EXC

2092 CASA – 390781972.

2190

https://github.com/qemu/qemu
https://github.com/FFmpeg/FFmpeg


Detecting Overfi�ing of Machine Learning Techniques for Automatic Vulnerability Detection ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

�ed Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668. https://www.aclweb.org/anthology/2021.naacl-
main.211

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
�ed Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668. https://www.aclweb.org/anthology/2021.naacl-
main.211

[3] Leonhard Applis, Annibale Panichella, and Arie van Deursen. 2021. Assessing
Robustness of ML-Based Program Analysis Tools using Metamorphic Program
Transformations. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1377–1381. https://doi.org/10.1109/ASE51524.2021.
9678706

[4] Pavol Bielik and Martin Vechev. 2020. Adversarial Robustness for Code. In
Proceedings of the 37th International Conference on Machine Learning (ICML’20).
JMLR.org, Article 84, 12 pages.

[5] Luca Buratti, Saurabh Pujar, Mihaela Bornea, Scott McCarley, Yunhui Zheng,
Gaetano Rossiello, AlessandroMorari, Jim Laredo, Veronika Thost, Yufan Zhuang,
et al. 2020. Exploring software naturalness through neural language models.
arXiv preprint arXiv:2006.12641 (2020).

[6] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.�ndings-
emnlp.139

[7] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
based Line-Level Vulnerability Prediction. In 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR). IEEE.

[8] Hazim Hanif and Sergio Ma�eis. 2022. VulBERTa: Simpli�ed Source Code Pre-
Training for Vulnerability Detection. In 2022 International Joint Conference on
Neural Networks (IJCNN). 1–8. https://doi.org/10.1109/IJCNN55064.2022.9892280

[9] JordanHenkel, GouthamRamakrishnan, ZiWang, AwsAlbarghouthi, Somesh Jha,
and Thomas Reps. 2022. Semantic Robustness of Models of Source Code. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE. https://doi.org/10.1109/saner53432.2022.00070

[10] Yaoxian Li, Shiyi Qi, Cuiyun Gao, Yun Peng, David Lo, Zenglin Xu, and Michael R.
Lyu. 2022. A Closer Look into Transformer-Based Code Intelligence Through
Code Transformation: Challenges and Opportunities. https://doi.org/10.48550/
ARXIV.2207.04285

[11] Yiyang Li, Hongqiu Wu, and Hai Zhao. 2022. Semantic-Preserving Adversarial
Code Comprehension. In Proceedings of the 29th International Conference on Com-
putational Linguistics. International Committee on Computational Linguistics,
Gyeongju, Republic of Korea, 3017–3028. https://aclanthology.org/2022.coling-
1.267

[12] Microsoft 2021. CodeXGLUE leaderboards. Retrieved March 8, 2023 from https:
//microsoft.github.io/CodeXGLUE/#LB-DefectDetection

[13] Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho. 2022. MultIPAs: applying
program transformations to introductory programming assignments for data
augmentation. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1657–
1661.

[14] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Annibal, Alec Peltekian,
and Yanfang Ye. 2021. CoTexT: Multi-task Learning with Code-Text Transformer.
In Proceedings of the 1st Workshop on Natural Language Processing for Program-
ming (NLP4Prog 2021). Association for Computational Linguistics, Online, 40–47.
https://doi.org/10.18653/v1/2021.nlp4prog-1.5

[15] Md Ra�qul Islam Rabin, Nghi D.Q. Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and
Mohammad Amin Alipour. 2021. On the generalizability of Neural Program Mod-
els with respect to semantic-preserving program transformations. Information
and Software Technology 135 (jul 2021), 106552. https://doi.org/10.1016/j.infsof.
2021.106552

[16] Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan,
Gaoyuan Zhang, and Una-May O’Reilly. 2021. Generating Adversarial Com-
puter Programs using Optimized Obfuscations. In International Conference on
Learning Representations. https://openreview.net/forum?id=PH5PH9ZO_4

[17] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-
Trained Models of Code. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Com-
puting Machinery, New York, NY, USA, 1482–1493. https://doi.org/10.1145/
3510003.3510146

[18] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial Examples for Models
of Code. Proc. ACM Program. Lang. 4, OOPSLA, Article 162 (nov 2020), 30 pages.
https://doi.org/10.1145/3428230

[19] Huangzhao Zhang, Zhiyi Fu, Ge Li, Lei Ma, Zhehao Zhao, Hua’an Yang, Yizhe
Sun, Yang Liu, and Zhi Jin. 2022. Towards Robustness of Deep Program Process-
ing Models—Detection, Estimation, and Enhancement. ACM Trans. Softw. Eng.
Methodol. 31, 3, Article 50 (apr 2022), 40 pages. https://doi.org/10.1145/3511887

[20] Huangzhao Zhang, Zhuo Li, Ge Li, L. Ma, Yang Liu, and Zhi Jin. 2020. Generating
Adversarial Examples for Holding Robustness of Source Code Processing Models.
In AAAI Conference on Arti�cial Intelligence.

[21] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: E�ective Vulnerability Identi�cation by Learning Comprehensive Program
Semantics via Graph Neural Networks. Curran Associates Inc., Red Hook, NY,
USA.

Received 2023-06-05; accepted 2023-08-11

2191

https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
https://doi.org/10.1109/ASE51524.2021.9678706
https://doi.org/10.1109/ASE51524.2021.9678706
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/IJCNN55064.2022.9892280
https://doi.org/10.1109/saner53432.2022.00070
https://doi.org/10.48550/ARXIV.2207.04285
https://doi.org/10.48550/ARXIV.2207.04285
https://aclanthology.org/2022.coling-1.267
https://aclanthology.org/2022.coling-1.267
https://microsoft.github.io/CodeXGLUE/#LB-DefectDetection
https://microsoft.github.io/CodeXGLUE/#LB-DefectDetection
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.1016/j.infsof.2021.106552
https://doi.org/10.1016/j.infsof.2021.106552
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3428230
https://doi.org/10.1145/3511887

	Abstract
	1 Introduction
	References

